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CHAPTER 1: INTRODUCTION 

 

The goal of health care is to maintain and improve health through the prevention, diagnosis,  

and treatment of physical and mental disease in human beings. A health care system is 

the organization of resources that deliver health care services to the target populations who are in 

need of health care. In particular, delivery of the health care is supported by health professionals, such 

as providers, in related health categories such as medicine, psychology, physical therapy, OBGYN 

clinics and other health professions which are all part of health care. It includes work done in 

providing primary care, secondary care, and tertiary care, as well as in public health.  

A variety of studies have documented the substantial deficiencies in the quality of health care 

delivered across the United States(Asch et al. 2006); (Kohn et al. 2000); (Anon 2001); (Schuster et al. 

1998); (Wenger et al. 2003). Attempts to reform the United States health care system in the 1980s and 

1990s were inspired by the system's inability to adequately provide access, ensure quality, and restrain 

costs, but these efforts had limited success. In the era of managed care, access, quality, and costs are 

still challenges, and medical professionals are increasingly dissatisfied (Poses 2003). According to the 

Centers for Medicare and Medicaid Services (CMS 2016), costs associated with national health care 

increased 4.3 percent in 2016 compared to 5.8 percent growth in 2015. United States devotes 17.9% 

of GDP to health care (spending $10,348 per person, in 2016, or $3.3 trillion total), compared with 

9% in Britain, yet life expectancy is slightly below average for a rich country and nearly 50 million 

Americans were uninsured in 2012 (CMS 2016). While there are no comparable studies for the quality 

of care delivered in the hospital outpatient setting, pervasive deficits across the health system suggest 

existence of the similar problems, particularly since a large fraction of care delivered in this setting is 

ambulatory care for acute and chronic conditions where deficits in quality have been amply 

demonstrated, (Teleki et al. 2007). In addition to the potential quality of care deficits in the hospital 

outpatient setting, the Centers for Medicare and Medicaid Services (CMS) and others have also 

https://en.wikipedia.org/wiki/Organization
https://en.wikipedia.org/wiki/Health_care
https://en.wikipedia.org/wiki/Primary_care
https://en.wikipedia.org/wiki/Secondary_care
https://en.wikipedia.org/wiki/Tertiary_care
https://en.wikipedia.org/wiki/Public_health
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observed growth in the volume of services and costs for care delivered in this setting. Outpatient 

clinics such as Diabetes, OBGYN, and cancer treatment centers represent a unique, but growing, 

point of care in the United States health care delivery system.  

In recent years, appointment scheduling in outpatient clinics has attracted much attention in 

health care delivery systems. Increase in demand for health care services as well as health care costs 

are the most important reasons and motivations for health care decision makers to improve health 

care systems. The goals of health care systems include patient satisfaction as well as system utilization. 

According to (Gupta & Denton 2008), less attention goes to the benefit of patients compared to that 

of clinic services and providers. As a result, health care systems have recently set goals regarding 

patient satisfaction and improving the performance of the health system by timely and appropriate 

health care delivery. (Liu et al. 2010) and (Gupta & Denton 2008) have reported that parameters such 

as demand uncertainty, patient no-show behavior, patient/provider unpunctuality, stochastic servers 

and multiple patient types such as real situations, modeling approaches, and solution methodologies 

are the criteria most commonly used in appointment scheduling, which makes it challenging. Many 

studies have documented the no-show rate in medical practice. (Macharia et al. 1992) reported a 42%  

average no-show rate which ranges from 6% to 92% in outpatient clinics. (Berg et al. 2014) reported 

13% to 24% no-show rates at endoscopy clinics for different service types. (Festinger et al. 2002) 

shows post intervention no-show rates ranging from 28% to 45%. (Dreiher et al. 2008) results show 

the overall no-show rate at OBGYN clinics as 30.1%. They investigated the strong relationship 

between patients’ appointment delays and no-show cases in OBGYN specialty clinics. In 

psychotherapy appointments, a 21% no-show rate was reported by (DeFife et al. 2010).  

 

 



www.manaraa.com

3 
 

 
 

(Ahmadi-Javid et al. 2017) suggest that decision making in outpatient appointment scheduling 

can be classified into three categories: strategic, tactical, and operational decisions which are long, 

medium and short-term decisions, in that order. The majority of papers focus on operational 

decisions, followed by on tactical decisions, but few studies are available on strategic decisions, which 

is a broad area for future work. 

Deterministic mathematical modeling is a part of optimization that has been broadly employed 

with the aim of decision making in real-world problems. In general, optimization involves finding the 

best solution for an objective function by limiting the search to specific conditions and constraints. 

The deterministic approach assumes that the data and parameters are known and have been used in 

many applications such as scheduling; however, in the presence of uncertainty (variable processing 

times) in a system, it may not give a realistic solution. Moreover, the presence of this uncertainty can 

make the optimal solution of a deterministic model infeasible or sub-optimal to the decision making 

problem. As a result, the stochastic approach tries to find solutions that optimize a performance 

measure under the assumption that uncertain parameters are random variables with known 

distributions. In stochastic programming, some distributional property of the objective function is 

usually adopted as a criterion to compare performances metrics in the problem. In other words, 

stochastic programming is another name for the research of optimal decision making under 

uncertainty. The term “stochastic programming” accentuates a connection to mathematical 

programming and algorithmic optimization schemes. These considerations in stochastic programming 

prevail over other fields of study and distinguish stochastic programming from other fields.  

Operations research historically focused on deterministic models, because it has some prope-  

rties such as: simplicity and better computational tractability, readily available commercial/open-

source software, avoiding effort needed in characterizing uncertainties for stochastic programming. 
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However, the solution of deterministic models might be compromised due to poor representation of 

real-world complexities. 

Stochastic programming has many applications in real-world problems such as manufacturing 

(supply chain planning), transportation (airline scheduling), telecommunications (network design), 

electricity power generation (power adequacy planning), health care (patient & resource scheduling), 

agriculture (farm planning under weather uncertainty), forestry (wildfire emergency response 

planning), finance (portfolio optimization). Airline planning is one of the first applications of 

stochastic programming to find the best way to allocate aircraft routes to improve passenger service 

(Ferguson & Dantzig 1956). (Birge & Louveaux 1997) offer many examples to illustrate various 

aspects of stochastic programming models in terms of the number of stages, continuous or discrete 

variables, probabilistic constraints, and linear/nonlinear constraint and objective functions. Moreover, 

(Sarin et al. 2014) reported various approaches such as robust scheduling, reactive scheduling, fuzzy 

scheduling, and stochastic scheduling that have been developed to address uncertainty in scheduling. 

For further information we refer the reader to (Daniels et al. 1995), (Kouvelis et al. 2000), 

(Sabuncuoglu & Bayiz 2000), (Balasubramanian & Grossmann 2003), and (Sarin et al. 2014) for each 

category in order and a complete survey on decision making under uncertainty by (Krokhmal et al. 

2011). 

According to (Birge & Louveaux 1997) we can categorize random events and random variables 

in two major classes. In the first class, we place uncertainties that recur frequently on a short-term 

basis. For instance, uncertainty may happen to daily or weekly demands. This results in a model where 

capacity allocation cannot be adjusted every time period. As a result, it follows that the expectation in 

the second-stage represents a mean over the possible values of the random variables, of which many 

will occur. In the second class, we place uncertainties that can be indicated as scenarios, of which 

fundamentally only one or a small number are realized. This would be the issue in long-term models 
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where scenarios demonstrate the general trend of the variables. In the second-stage, only one scenario 

is realized (among all scenarios over which the expectation is taken).  

A two-stage stochastic programming approach is one of the most common methods in appoi-  

ntment scheduling. (Berg et al. 2014), (Erdogan & Denton 2013), (Qu et al. 2013), (Muthuraman & 

Lawley 2008) and (Erdogan et al. 2015) have formulated two-stage stochastic programming models. 

For complete review of these literature we refer the reader to chapter two of this dissertation.  

Most of the recent literature has applied risk-neutral two-stage stochastic programming, which is a 

traditional method that has been used in many studies we mentioned earlier. There is a variety on 

choosing objective functions. A commonly used criterion is the expected value, which can be regarded 

as the long-run average performance of a schedule. This method finds the expected value of the 

performance measure such as patient flow metrics in the objective function as the preference criterion. 

For example (Erdogan et al. 2015) in outpatient appointment scheduling and (Skutella & Uetz 2005) 

in machine scheduling problems have used expected value as a performance measure. (Daniels et al. 

1995) indicate that a critical disadvantage of using the expected value as a performance measure is that 

it does not account for the risk-averse attitude of a decision maker. As a result, some researchers have 

focused on considering a risk measure to model formulation. For example, (Sarin et al. 2014) use 

CVaR as a criterion in the machine scheduling problem considering uncertainty in the system, and 

(De et al. 1992) use variance as a risk measure to determine expectation-variance based efficient 

schedules. We also formulate a risk-averse two-stage stochastic programming in chapter three, which 

is related to mean-risk objectives and can be used instead of risk-neutral objectives. They consider the 

effect of variability and specify the preference relations among the random variables using risk 

measures such as Conditional-Value-at-Risk (CVaR). A few optimization studies have proposed risk-

averse objectives, such as the Markowitz mean-variance method  (Mak et al. 2015) and (Qu et al. 2012) 
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and the Von Neumann–Morgenstern expected utility method (e.g., (Kemper et al. 2014); (Kuiper & 

Mandjes 2015); (LaGanga & Lawrence 2012) and (Vink et al. 2015). 

In the second chapter of this dissertation we mainly focus on risk-neutral two-stage stochastic  

programming where the objective function considers the expected value as a performance criterion, 

and in the third chapter, we expand the model formulation to mean-risk two-stage stochastic 

programming in which we investigate the effect of considering a risk measure in the model. We apply 

Conditional-Value-at-Risk (CVaR) as a risk measure for the two-stage stochastic programming model.  

The goal of this dissertation is designed as follows: first, patient scheduling, where we optimize  

weekly scheduling template for individual providers to improve patient satisfaction by minimizing 

direct and indirect wait times as well as balance workloads, and new patient assignments. Next, the 

framework for dynamically scheduling patients using scheduling template which allows 

operationalization of scheduling template while allows the possibility of scheduling multiple 

appointments at once. Second, robust scheduling through Conditional-Value-at-Risk (CVaR). We 

develop a risk averse approach to capture the effects of variability of random outcomes under certain 

realizations of the random data. While improving metrics on average, we ensure no subset of patients 

are experiencing extreme waiting times. 

 

 

 

 

 

 



www.manaraa.com

7 
 

 
 

CHAPTER 2: RISK-NEUTRAL TWO-STAGE STOCHASTIC PROGRAMMING MODEL 
TO OPTIMIZE THE PATIENT FLOW METRICS AT OUTPATIENT CLINICS 

2.1. Introduction 

Developing an efficient appointment scheduling and management system considering a stoch-  

astic server is needed to overcome the following problems:  the no-show behavior of patient arrival, 

patient/provider check-in delays, overbookings, long wait times, and poor provider/staff utilization. 

These are pervasive in outpatient clinics, and much research has been done recently to apply different 

methodologies such as overbooking and designing optimized appointment scheduling systems to 

overcome these deficiencies (Erdogan & Denton 2013), (Zacharias & Pinedo 2014), (Muthuraman & 

Lawley 2008). On the other hand, appointment scheduling systems, which give patients flexibility in 

choosing their appointment time, not only lead to satisfied patients but also have outstanding effects 

on other patient flow metrics such as decreasing the no-show rate as well as patient appointment 

delays (time between patient desired time and assigned appointment time) and higher patient retention 

rates, which result in better reimbursement rates by payers for providers (Feldman et al. 2014), (Rau 

2011). Many studies have documented the no-show rate in medical practice. (Macharia et al. 1992) 

reported a 42%  average no-show rate which ranges from 6% to 92% in outpatient clinics. (Berg et al. 

2014) reported 13% to 24% no-show rates at endoscopy clinics for different service types. (Festinger 

et al. 2002) shows post intervention no-show rates ranging from 28% to 45%. (Dreiher et al. 2008) 

results show the overall no-show rate at OBGYN clinics as 30.1%. They investigated the strong 

relationship between patients’ appointment delays and no-show cases in OBGYN specialty clinics. In 

psychotherapy appointments, a 21% no-show rate was reported by (DeFife et al. 2010). 

Another patient flow metric is patients’ appointment delays known as indirect wait time in the 

literature. (Hawkins & Irving 2017) conducted a survey to determine the average indirect wait time for 

new patients to see a provider in 15 major and 15 mid-sized metropolitan areas in different specialty 

clinics as well as the rates of physician Medicaid and Medicare acceptance in these areas.(Hawkins & 
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Irving 2017) did this survey in 2004, 2009, 2014, and 2017 and the results showed an increase in the 

indirect wait time in 2017 comparing to other years. In 2004, the statistics was reported for 15 mid-

sized metropolitan markets between 88,000 and 143,000 people including 1414 medical offices in large 

metro markets and 494 medical offices in mid-sized metro markets. They reported the indirect wait 

time for cardiology, dermatology, obstetrics-gynecology, orthopedic surgery and family medicine, 

which we depicted average indirect wait time of obstetrics-gynecology clinic as it is the focus of this 

research in Figure 1. Table 1 provides average obstetrics-Gynecology indirect wait time in major 

markets: Atlanta, Boston, Dallas, Denver, Detroit, Houston, Los Angeles, Miami, New York, 

Philadelphia, Portland, San Diego, Seattle, and Washington, D.C. are reported. 

Indirect Wait Time 

 

 

           Atlanta     Boston       Dallas       Denver      Detroit      Houston      LA        Miami    Minneapolis   NY      PHI       Portland    San Diego    Seattle     Wash. D.C. 

 

Fig. 1. Indirect wait time (day) in OBGYN clinic reported by (Hawkins & Irving 2017) for 15 cities in the 

United States 
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Average Obstetrics-Gynecology 

Appointment Wait Times, 

Major Markets* 

YEAR DAYS 

2017 26.4 

2014 17.3 

2009 27.5 

2004 23.3 

 
Table. 1. Indirect wait time (day) in OBGYN clinic reported by (Hawkins & Irving 2017) for 15 cities in the 
United States 
 

In this chapter, we focus on the sources of inconsistencies such as no-show behavior, long  

direct and indirect wait time. The goal is to develop models that improve patient flow metrics: direct 

wait time (clinic wait time), indirect wait time considering patient’s no-show behavior, stochastic 

server, follow-up surgery appointments, and overbookings. We develop a model for two purposes: 1) 

Patient Channeling, which means characterizing services rendered by the outpatient clinic and the 

individual physicians/staff within to channel new patients to the most appropriate service providers 

and address the needs of any clinical trials being supported by the providers; and 2) Patient Scheduling, 

the objective of which is to schedule both new and established patients for individual providers and 

facility locations while increasing throughput per session while providing timely care (e.g., minimizing 

the “indirect” wait-time between appointment desired date and appointment date), continuity of care, 

and overall patient satisfaction, as well as equity of resource utilization. This objective results in 

developing two models: 1) a method to optimize the (weekly) scheduling pattern for individual 

providers that would be updated at regular intervals (e.g., quarterly or annually) based on the type and 

mix of services rendered and 2) a method for dynamically scheduling patients using the weekly 
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scheduling pattern. Scheduling will entertain the possibility of arranging multiple appointments at once 

(e.g., both surgery and post-surgery follow-up visits can be scheduled together for improved care). 

We introduce definitions and terms which will be used in this research. Some of them are from  

us and some from outpatient scheduling papers summarized in a survey by (Ahmadi-Javid et al. 2017).  

Definitions and Terms: 

▪ Appointment interval (slot): The time window between two consecutive appointment times.  

▪ Appointment time: The start time of scheduled appointment for an individual patient. 

▪ Block: Group of patients scheduled for the same appointment slot.  

▪ Block size: The number of patients scheduled for the same appointment slot.  

▪ Patient preference: A situation where a patient decides whether to accept the offered 

appointment time from call center or not; in other words, a patient accepts the appointment 

time with respect to his/her preference. 

▪ Direct waiting time (clinic waiting time): The aggregate waiting time a patient experienced 

between the arrival to and exit from an individual server in the clinic. (Our research considers 

multiple servers).  

▪ Indirect waiting time (delay): The time between the appointment request and the scheduled 

appointment time (Zacharias & Armony 2016). 

▪ Flow time: The total time a patient spends in the clinic center (Cayirli & Veral 2003). 

▪ No-show patient: A patient who does not show up for his\her appointment. 

▪ No-show rate: The probability that the patient is a no-show case.  

▪ Outpatient Appointment System (OAS): A main stream in an outpatient clinic that designs an  

appointment scheduling system with the aim of timely and convenient delivery and access to 

healthcare services for all patients (Gupta & Denton 2008). 
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▪ Outpatient clinic: A healthcare system that provides treatment and care to patients without an 

overnight stay in a health facility.  

▪ Overtime: The difference between the available length of time session in a day for health 

services and the actual end of the service for the final patient in a clinic (Cayirli & Veral 2003).  

▪ Panel size: The potential number of patients assigned to providers for services.  

▪ Same-day appointment: An appointment that is scheduled on the same day that the patient 

asks for an appointment. 

▪ Server idle time: The part of the consultation session that the server (or physician) is idle due 

to lack of patient(s).  

▪ Service duration: The length of time a single patient spends with the service provider.  

▪ Scheduled patient: A patient who makes an appointment before arriving at the clinic.  

▪ Call center: An office in the medical service which provides appointment time to the individual 

patient. This center uses appointment scheduling template as a guidance to assign the 

appointment to each patient.    

This chapter is organized as follows. Section 2.2 reviews the relevant literature. Section 2.3 de-  

scribes the problem. Section 2.4 formulates a Two- Stage Stochastic Mixed-Integer Linear Program 

Model (two-stage SMILP). Solution of the two-stage SMILP provides the optimal capacity assigned 

for each time slot. Section 2.5 explains a demand generation simulation. In section 2.6, we introduce 

a dynamic appointment scheduling policy for actual appointment assignment for different patient 

types. Section 2.7 explains clinic simulations and direct wait time. In this section we calculate the direct 

wait time experienced by individual providers. Section 2.8 describes the case study and data driven 

from literature. Section 2.9 provides results and concluding remarks. 
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2.2. Literature review 

In recent years, appointment scheduling in outpatient clinics has attracted much attention in  

health care delivery systems. Designing an effective appointment scheduling system in outpatient 

clinics results in a smooth flow of patients and work as well as consideration of patients’ and 

physicians’ preferences while matching supply and demand. As stated by (Gupta & Denton 2008) less 

attention goes to the benefit of patients compared to that of clinic services and physicians. Therefore, 

improving the performance of the health system with the aim of patient satisfaction that can be 

achieved by timely and appropriate health care delivery is the goal of a well-organized and reliable 

outpatient appointment scheduling system. Specifically, guaranteeing patients to get requested service 

with short time window as well as balancing the system’s utilization, in order to prevent the system 

from over and under- utilization. On the other hand, matching demand and supply in the presence of 

uncertainty in the system is another issue. One solution can be taking care of enough inventories in 

production systems; however, service systems such as clinics, repair shops, airport transportations, 

manage request through appointments, (Liu et al. 2010). Moreover, there are a variety of uncertainties 

in the service systems, such as patient no-shows and patient cancellation which will affect system’s 

performance. (Liu et al. 2010) developed a framework to find the possibility that patients may cancel 

or no-show at their time of appointments. There are many kinds of literature in outpatient 

appointment scheduling (AS). (Gupta & Denton 2008) discussed a variety of methods in modeling, 

optimization, and future work in appointment scheduling. 

We review some of the categories in this section: static versus dynamic with solution method-  

ologies, risk-neutral two-stage stochastic programming, clinic environment: multi versus single service. 

In some categories, we captured literature involved in direct and indirect waiting time, patient no-

show and patient cancellation behavior as well as overbooking models.    
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2.2.1. Appointment scheduling problems  

In survey papers by (Gupta & Denton 2008) and (Cayirli & Veral 2003), a complete review of  

the state of the art in modeling and optimization with future research studies is provided. (Cayirli & 

Veral 2003) divided decision making in outpatient appointment scheduling into static and dynamic 

models. (Cayirli & Veral 2003) and (Muthuraman & Lawley 2008)  define static appointment 

scheduling when decisions about appointment times are made prior to the start of the appointment 

session while in dynamic case, appointment schedule may be modified later depending on the state of 

the system. In research by (Erdogan et al. 2015) static appointment scheduling is defined as a problem 

to find the optimal start times for a given number of patients to visit a stochastic server. In this case 

the number of patients is already known.     

(Liu et al. 2010) developed a dynamic scheduling of outpatient appointment approach to assig-  

ning an appointment to each patient depending on the clinic’s appointment schedule at the time of 

the patient’s call. Comparing our research with papers in static and dynamic models, we schedule 

patients dynamically upon arrival of each request. Another category in our literature review is related 

to solution methodologies. The work by (Zeng et al. 2010), (Laganga & Lawrence 2007), and (Liu et 

al. 2010) used heuristics as solution methodology for appointment scheduling. Moreover, in another 

paper, (Zenios et al. 2000) used heuristic policy to allocate kidney to transplant patients dynamically. 

(Qu et al. 2013) in outpatient scheduling with a specialty for OBGYN apply Monte Carlo sampling 

based genetic algorithm to solve a mixed integer program. (Liu et al. 2010) also develop heuristic policy 

for dynamic appointment scheduling considering one patient type with no-show and cancellation 

behaviors to assign appointments to arrival calls on a daily pattern. Similarly, we develop a heuristic 

to assign an appointment to each arrival request.  

Another classification on appointment scheduling is with respect to two waiting times: direct 
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and indirect. (Liu et al. 2010), (Erdogan & Denton 2013), (Qu et al. 2013), (Muthuraman & Lawley 

2008) and (Zacharias & Armony 2016) are among the most recent studies  on appointment scheduling 

which consider waiting time in model formulations. In a paper by (Zacharias & Armony 2016), direct 

waiting time/clinic delay is physical waiting time experienced by patients once they arrive at the clinic, 

and indirect waiting time/appointment delay is defined as the time window between the appointment 

request and the offered appointment. In the research of (Zacharias & Armony 2016), crucial 

characteristics such as the randomness of service time and patient punctuality as well as patient no-

show behavior are addressed. Moreover, the optimal number of appointment slots per day and the 

size of the medical practice panel are captured. In the problem formulation, both direct and indirect 

waiting times are addressed; next, based on the diffusion approximations technique, they end up with 

a closed form formulation that includes a performance measure of maximizing the long-run average 

daily net profit of a medical system while providing care to patients. Similar to the research by 

(Zacharias & Armony 2016), we minimize indirect and direct waiting time in the model.  

In another study by (Qu et al. 2013), a weekly schedule pattern in outpatient clinics for an OB-  

GYN specialty considering different service types and different providers is found. They develop a 

model formulation in two phases; in the first phase they formulate a mixed integer program and 

capture the scheduling pattern, and in the second phase, they propose a stochastic mixed integer 

program to assign appointment start times while minimizing patient direct waiting times and provider 

idle/over time. A Monte Carlo sampling based genetic algorithm is developed to solve the two-stage 

mixed integer program. Similar to the research by (Qu et al. 2013), we get the appointment schedule, 

schedule patients dynamically and monitor direct waiting time; however, we also capture the 

scheduling pattern after solving a two-stage stochastic mixed integer linear program and minimize the 

indirect waiting time in our model formulation. 

Many articles as discussed above captured direct waiting time in their model formulation direc-  
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tly, but few researchers have addressed indirect waiting time. One of the contributions of our work is 

the control of indirect waiting time of the system in the model formulation while monitoring the direct 

waiting time indirectly as a feedback process which is explained in section (2.7).  

2.2.2. Two-Stage Stochastic Programming in Appointment Scheduling 

A two-stage stochastic integer programming approach is one of the most common methods  

in appointment scheduling. (Berg et al. 2014), (Erdogan & Denton 2013), (Qu et al. 2013), 

(Muthuraman & Lawley 2008) and (Erdogan et al. 2015) formulated two-stage stochastic integer 

programming models. (Berg et al. 2014) presented optimal booking methods in outpatient clinics. 

They employed a two-stage stochastic mixed integer program considering uncertainty in a system for 

optimizing booking and appointment times with the objective of maximizing expected profit. The 

number of appointments reserved for a given day, the relationship between the number of reserved 

patients and the likelihood of nonattendance, the optimal priority of patients during the day, as well 

as the optimal arrival model and whether it is optimal to consider double booking in case of 

cancellation or no-show cases is investigated. However, arrival delay and rescheduling in a given day 

are not allowed in the model.     

(Erdogan & Denton 2013) formulated the appointment scheduling in two model levels: first  

is a two-stage stochastic linear program (2-SLP) for static appointment scheduling capturing no-show 

behavior; second, dynamic scheduling is formulated by a multistage stochastic linear program (M-

SLP). The authors used a decomposition algorithm, and computational experiments are reported. 

In research by (Muthuraman & Lawley 2008), the stochastic overbooking model in outpatient 

appointment scheduling for clinical use is modeled. Patient waiting time, provider over time and 

patient revenue are considered in the objective function of the model formulation.  

The literature on appointment scheduling we discussed has limitations: there is no simultaneo-  
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us consideration of direct and indirect wait times along with providers’ workloads. Mostly risk-neutral 

approaches and limited planning horizon are considered. 

In this research, we devise a two-stage stochastic mixed integer program for appointment sche-  

duling and consider demand uncertainty in the system that takes into account the no-show behavior 

of patients. We also assume that assignments cannot be changed once the appointment is scheduled 

for the patient. Moreover, we are interested in determining the appointment time-slot in a service 

session when the appointment should be scheduled. In addition, we open free time-slots in our model 

formulation for emergency/post-surgery follow-up arrivals and calculate the direct waiting time of the 

system simulating the clinic with multiple servers and control direct waiting time indirectly.  

2.3 Problem description 

We design an appointment scheduling model capturing multi-type patient channeling to differ-  

ent provider levels in the OBGYN clinic specialty. The objective is to improve patient flow through 

outpatient clinics using efficient appointment scheduling policies. We improve indirect waiting time 

in our formulation settings as part of the objective function, and direct waiting time at the clinic 

specialty as part of our constraints in our model. Direct waiting time/clinic delay, is physical waiting 

time experienced by the patients once they arrive at the clinic and indirect waiting time/appointment 

delay is defined as the time window between the appointment request and the offered appointment, 

(Zacharias & Armony 2016). The objective of the decision-making problem in the first-stage is to 

balance a provider’s workload between different clinic sessions as well as among each time slot. The 

provider’s workload is controlled by channeling individual patient’s type to the appropriate provider 

in the constraints of the model during each work day. Based on the research on OBGYN specialty 

clinics by (Qu et al. 2013) and (Lenin et al. 2015), we divide patients into three categories and, 

consequently, seven patient types with respect to the expected service time duration for each patient 

type, Table.2. 
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Service Category Service Type                                                  

Low Risk OB New Low-Risk OB 

Follow-Up Low-Risk OB 

High Risk OB Follow Up High-Risk OB 

Gynecology New GYN 

MAU GYN 

Established GYN 

Results GYN 

    
Table.2. OBGYN patient types 

 
There are two providers available on all days of the week who can provide all service categories  

for different patient types. Patients are scheduled with any available provider in each clinic session 

(morning/afternoon) with identical service slots of 15 minutes, which is common in practice. 

Moreover, as many providers are different in their practice styles in specialty clinics, the model opens 

free capacity for lunch hours, office work for providers and in some cases appointments for follow-

up surgery. Service time duration for each patient type is based on the literature on OBGYN clinic 

(Qu et al. 2013) and  (Lenin et al. 2015). In the research by (Lenin et al. 2015), data are collected from 

the West Little Rock (WLR) clinic operated under the University of Arkansas for Medical Sciences 

(UAM). The research framework is shown in Figure 2. First, the risk-neutral two-stage stochastic 

programming model employs the input data including supply and demand parameters and produces 

a weekly scheduling template. This scheduling template specifies appointment allocation of patient’s 

requests considering patient types and resource availability to different time slots. Next, in clinic 

simulation we evaluate the performance of the patient flow of the weekly scheduling template. If the 

flow of the patients for a week are not satisfactory, additional constraints are added to the model to 

avoid the sequence causing this unpleasant condition within the optimal template and we re-optimize 
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the model. We will continue this process until we obtain the optimized weekly scheduling. In the next 

step, the optimal scheduling template is ready to be used with the call center for actual appointment 

assignment. This scheduling template is used as a guide for a whole planning horizon. After assigning 

the appointments, we check the true patient flow for the clinic and see if the que of the patients is 

satisfactory or not. We continue this process for the planning horizon until we receive a patient flow, 

which is unsatisfactory. At this time, we re-optimize the scheduling template.    

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Research framework 

2.4 Two- Stage Stochastic Mixed-Integer Linear Program Model (two-stage SMILP) 

Two-stage stochastic programming methodology is a mainstream technique in model formula-  

tion under uncertainty and inexactness in data. Decisions without complete information on random 

events are called first-stage decisions. Soon thereafter, full information is received on the realization 

of some random vector, and the second-stage data become known; then the second-stage decision is 

made. This chapter addresses Two-Stage Stochastic Mixed-Integer Linear Program (two-stage SMIPL) 

model, where the first stage consists of decisions on the number of capacities for the scheduling 

template and some penalty costs for over/under utilization of time slots, and the second stage involves 
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some recourse, such as a penalty for indirect wait time as well as capacity violation cost. A generic 

formulation of this class of problems is 

𝑧∗ =  𝑚𝑖𝑛𝑥𝜖𝑋𝑐𝑇𝑥 +  𝔼Ω[ 𝑓(𝑥, 𝜉 (𝜔̃))] , 

where 

𝑓(𝑥, 𝜉 (𝜔)) = 𝑚𝑖𝑛𝑦≥0{𝑞(ω)𝑇𝑦 |𝐷𝑦 ≥ ℎ(ω) − 𝑇(ω)𝑥}, 

𝑥 denotes the first-stage appointment capacity decision, 𝑋 denotes the first-stage feasible set involving 

constraints to control critical factors for patients and providers for scheduling purposes, 𝜔𝜖Ω denotes 

a scenario that is unknown when the first-stage decision 𝑥 has to be made, but that is known when 

the second-stage recourse decision 𝑦 is made, Ω is the set of all scenarios, and 𝑐 denotes the penalty 

cost for over/under utilization for new patients as well as each time-slot. We assume that the 

probability distribution P on Ω is known in the first stage. The quantity 𝑓(𝑥, 𝜉 (𝜔̃)) represents the 

optimal value of the second-stage recourse problem corresponding to the first-stage 𝑥 and the 

parameters 𝜉 (𝜔) = (𝑞(ω), ℎ(ω), 𝑇(ω)). In the following subsections, we first introduce model 

formulation in section (2.4.1). Solution scheme: sample average approximation (SAA) in section 

(2.4.2). Then, we explain demand generation addressing uncertainty in the system in section (2.5).  

2.4.1 Model formulation 

The objective of the decision-making problem in the first-stage balances a provider’s workload  

not only among morning/afternoon sessions, but also in each time-slot of the clinic. In our model 

formulation, the first-stage determines the amount of capacity reserved for each patient type assigned 

to each provider for individual time-slots in a weekly pattern which will be used for a whole month. 

In the second-stage, we determine time-slot utilization for individual patient types assigned to each 

provider for individual time-slots under scenario 𝜔. We use notations denoted in Table 3 for the 

model formulation. 
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Set 

𝑇  Set of planning horizon 

ℛ  Set of providers 

𝒩  Set of patient types 

𝑁′  Set of new patient type 

Ω  Set of all scenarios 

𝑅𝑃𝑡  Set of risk factors for different patient type 

𝑅𝑃𝑟  Set of risk factors for different provider levels  

ℋ  Set of free time slots for each provider over time horizon 𝑇 

𝒮  Set of morning/afternoon sessions over time horizon 𝑇 

𝜂  Set of feedback sequence over morning/afternoon session of every day 

𝛽  Set of patients scheduled for specific clinic day 

𝜉  Set of exam rooms in the clinic 

Γ  Set of call, desired and appointment times, indexed by 𝛾(𝑡)𝜖Γ containing time-slot, 𝑡𝜖𝑇  

 

Parameter 

𝑎𝑗  Number of new patients desired by provider, 𝑗𝜖 ℛ  

𝑐𝑓𝑖  Risk factor for patient type, 𝑖𝜖𝒩 

𝐶𝐹𝑗  Risk factor for provider, 𝑗𝜖 ℛ  

𝑡𝑙𝑟𝑗  Tolerance factor of provider, 𝑗𝜖 ℛ  

Δ𝑗  Cost of additional capacity of provider, 𝑗𝜖 ℛ  

𝜌𝑗  Cost of new patient type for provider, 𝑗𝜖 ℛ 

𝑐𝑗  Free capacity for provider, 𝑗𝜖 ℛ over time horizon 𝑇 

𝑝𝑖  Average no-show probability of patient type, 𝑖𝜖𝒩  

Μ  A large number 

𝒢  Number of time-slots per week 

|𝒮|  Cardinality of 𝒮 

𝜆  Penalty parameter for penalty variable for each time-slot, 𝑡𝜖𝑇 

𝑑𝑖,𝑗,𝛾(𝑡)(𝜔)  Demand of patient-type, 𝑖𝜖𝒩 ask for provider, 𝑗𝜖 ℛ, with call and desired time set 

𝛾(𝑡)𝜖Γ under scenario, 𝜔𝜖Ω   

 

First-stage decision variables 

𝑥𝑖,𝑗,𝑡  Number of patient type, 𝑖𝜖𝒩assigned to provider, 𝑗𝜖ℛ per time-slot, 𝑡𝜖𝑇    

𝑒𝑗  Penalty variable for provider, 𝑗𝜖 ℛ  w.r.t. new patient type 

𝑧𝑗,𝑡  1 if time-slot, 𝑡𝜖𝑇 is free for provider, 𝑗𝜖 ℛ , else 0 

𝑑𝑒𝑣𝑡  Penalty variable for each time-slot, 𝑡𝜖𝑇  

Second-stage decision variables 

𝑦𝑖,𝑗,𝛾(𝑡)(ω)  Time slot utilization for number of type, 𝑖𝜖𝒩  patient asked for provider, 𝑗𝜖 ℛ with 

call, desired and appointment time set 𝛾(𝑡)𝜖Γ under scenario, 𝜔𝜖Ω  

𝑏𝑗,𝑡 (ω) Capacity slack variable for provider, 𝑗𝜖 ℛ, time-slot, 𝑡𝜖𝑇, under scenario, 𝜔𝜖Ω 

 
Table. 3. Notation used in Risk-neutral two-stage SMILP model 
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First-stage objective function: 

 

min ∑ 𝜌𝑗   .  𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇  +  𝔼Ω[ 𝑓(𝑥, 𝜉(𝜔̃))]                                                                   (𝑃)𝑗 𝜖 ℛ                                   

 

First-stage constraints: 

 𝑒𝑗  +  ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑖𝜖𝑁′ 𝑡𝜖𝑇 ≥  𝑎𝑗                                                                                  𝑁′ ⸦  𝑁 , ∀ 𝑗 ∈ ℛ  (1)  

 𝑒𝑗 −  ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑖𝜖𝑁′ 𝑡𝜖𝑇 ≥  −𝑎𝑗                                                                                𝑁′ ⸦  𝑁 , ∀ 𝑗 ∈ ℛ  (2)  

 𝑑𝑒𝑣𝑡 −  ∑ ∑ 𝑥𝑖,𝑗,𝑡   𝑖𝜖𝑁𝑗 𝜖ℛ +  ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑡𝜖𝑇 / ℊ𝑗 𝜖ℛ𝑖𝜖𝑁     ≥ 0                                         ∀ 𝑡 ∈ 𝑇 (3)  

 𝑑𝑒𝑣𝑡 +  ∑ ∑ 𝑥𝑖,𝑗,𝑡   𝑖𝜖𝑁𝑗 𝜖ℛ −  ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑡𝜖𝑇 / ℊ𝑗 𝜖ℛ𝑖𝜖𝑁     ≥ 0                                         ∀ 𝑡 ∈ 𝑇 (4)  

 ∑ 𝑐𝑓𝑖  . 𝑥𝑖,𝑗,𝑡 ≤𝑖𝜖𝑁  𝐶𝐹𝑗                                                                                                      ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ ℛ (5)  

 

 ∑ ∑ 𝑐𝑓𝑖  . 𝑥𝑖,𝑗,𝑡 ≤𝑖𝜖𝑁 𝑡∈𝒮 |𝒮|𝐶𝐹𝑗 − 𝑡𝑙𝑟𝑗                                                                        𝒮 ⊂ 𝑇, ∀ 𝑗 ∈ ℛ (6)  

 

 ∑ 𝑧𝑗,𝑡   =𝑡𝜖ℋ  𝑐𝑗                                                                                                             ℋ ⊂ 𝑇, ∀ 𝑗 ∈ ℛ (7)  

 

 ∑  𝑥𝑖,𝑗,𝑡   ≤𝑖𝜖𝑁  Μ . (1 −  𝑧𝑗,𝑡)                                                                            ∀ 𝑡 ∈ ℋ ⊂ 𝑇, 𝑗 ∈ ℛ (8)  

 

 ∑  𝑥𝑖,𝑗,𝑡  ≤𝑖,𝑗,𝑡𝜖𝜂 |𝜂| − 1                                                                                                 𝜂 ⊂ 𝛽, 𝜂 ≠ ∅  (9)  

 

 𝑥𝑖,𝑗,𝑡 ∈  ℤ+,  𝑒𝑗 ∈ ℝ+, 𝑧𝑗,𝑡 ∈ {0,1}, 𝑑𝑒𝑣𝑡 ∈  ℤ+, ℊ ∈ 𝒢                                                                     (10)       

 

Second-stage objective function: 

𝑓(𝑥, 𝜉 (𝜔)) =  

min ∑ ∑ ∑ 𝑦𝑖,𝑗,𝛾(𝑡)(ω). 𝑑𝑖,𝑗,𝛾(𝑡)(𝜔).  𝜗 +𝛾(𝑡)𝜖Γ𝑗 ∈ℛ ∑ ∑ 𝑏𝑗,𝛾(𝑡) (ω) .  Δ𝑗𝛾(𝑡)/{𝑡𝑐,𝑡𝑑}𝜖Γ𝑗 ∈ℛ𝑖𝜖𝑁   

Second-stage constraints: 

 ∑ (1 − 𝑝𝑖) . 𝑦𝑖,𝑗,𝛾(𝑡)(ω). 𝑑𝑖,𝑗,𝛾(𝑡)(𝜔)   ≤𝛾(𝑡)/{𝑡𝑎}𝜖Γ 𝑥𝑖,𝑗,𝑡 +  𝑏𝑗,𝑡 (ω)       ∀𝑖 ∈ 𝑁, 𝑗 ∈ ℛ, 𝑡 ∈ 𝑇 (11) 

 ∑ 𝑦𝑖,𝑗,𝛾(𝑡)(ω) = 1                                                      ∀𝑖 ∈ 𝑁, 𝑗 ∈ ℛ, 𝛾(𝑡)/{𝑡𝑎} ∈ Γ (12)𝛾(𝑡)/{𝑡𝑐,𝑡𝑑}𝜖Γ   

 0 ≤ 𝑦𝑖,𝑗,𝛾(𝑡)(ω) ≤ 1,   𝑏𝑗,𝑡 (ω) 𝜖 ℝ, 𝜔𝜖Ω                                                                                          (13) 

In the above formulation, constraints (1) and (2) check the difference between the desired nu-  
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mber of new patients by individual providers and the assigned number of new patients to each 

provider. In other words, the equity of new patients among all providers is being evaluated by 

constraints (1) and (2). Constraint (3) and (4) calculate all capacities reserved for each time-slot and 

find average of capacities reserved over the week. Finally, they find the deviation between capacities 

reserved for each time-slot and average the amount over the week. Next, this deviation is penalized in 

the objective function (P). In constraint (5), provider workload in each time slot of the clinic is 

controlled, and individual patient type is channeled to each provider. However, constraint (6) is to 

balance the provider workload among clinic sessions while channeling patient types to the providers. 

Constraint (7) opens free capacity for each provider based on the desired number of time slots by 

individual providers through afternoon sessions. These free capacities are reserved for emergency/ 

post-surgery follow-up appointment requests. Constraint (8) guarantees there will be no assignments 

in time slots obtained by constraint (5). Constraint (9), which is called the feedback constraint, is to 

remove the sequence of patients whose violated clinic wait time threshold. In the second-stage, 

constraint (11) doesn’t allow each time-slot’s utilization to exceed the capacity reserved in the first-

stage mixed-integer linear problem. In the second-stage, capacities are determined based on first-stage 

decisions.  

Finally, constraint (12) assigns appointment time to each demand arrival. The objective funct-  

ion (𝑃) in two-stage mixed-integer linear problem penalizes the system’s over/under utilization in 

terms of time slot. In the first part of the objective function, the model penalizes the over/under 

utilization of time-slots reserved for new patient types for an individual provider, and in the second 

part of the objective function, indirect waiting time (the time between a patient’s desired time and the 

assigned appointment time) in terms of time slot is penalized. In the second-stage objective function, 

𝜗 denotes 𝑓(𝑡𝑎 − 𝑡𝑐). (𝑡𝑎 − 𝑡𝑑), where 𝑓(𝑡𝑎 − 𝑡𝑐) =  (𝑡𝑎 − 𝑡𝑐)−
1

2  is called the penalty function 

(super-linear function) and controls the indirect waiting time of the system; This function considers 
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fairness in assigning appointment with delays to patient requests. 𝑡𝑐 and 𝑡𝑎 denote call and 

appointment times, respectively.  

2.4.2 Solution Scheme: Sample average approximation (SAA) 

Referring to (Verweij et al. 2003), the sample average approximation (SAA) method is an app-  

roach to solve stochastic optimization problems. Moreover, sample average approximation approach 

brings some advantages to two-stage stochastic programming. Firstly, the two-stage SMILP off the 

shelf solvers can typically solve instances with few number of scenarios. However, a typical problem 

instance in a practical case would have thousands of scenarios. Sample average approximation (SAA) 

method is a method to handle this problem. Approximating an optimal solution of stochastic 

programming with small number of scenarios results in monotonically better solution when we 

increase the number of scenarios. Secondly, SAA is useful when the number of scenarios is unknown.  

We use the sample average approximation (SAA) to reduce to the size of the problem by rep-  

eatedly solving it with a smaller set of scenarios. We generate random samples with 𝒩 < |Ω | 

realizations of the uncertain parameters and approximate the expected recourse costs by the sample  

average function  
1

𝒩
∑ 𝑓(𝑥, 𝜔̃)𝒩

𝑛=1 . 

As a result the problem (1) – (13) is approximated by the following SAA problem: 

min ∑ 𝜌𝑗   .  𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇  +  
1

𝒩
  ∑ 𝑓(𝑥, 𝜔𝑛)𝒩

𝑛=1                                                            (14)𝑗 𝜖 ℛ   

If we solve the SAA problem (14) with independent samples for many times, the outcome can be 

more efficient than increasing the sample size 𝒩. For complete procedure we refer the readers to  

(Schutz et al. 2009) and (Santoso et al. 2005); however, we include it here for complementary:  

1. Generate ℳ independent samples of size 𝒩 and solve the SAA problem in below: 

min ∑ 𝜌𝑗   .  𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇  +  
1

𝒩
  ∑ 𝑓(𝑥, 𝜔𝑛)𝒩

𝑛=1                                                      𝑗 𝜖 ℛ   

2. Calculate the average of all optimal objective function values from the SAA problems: 
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𝑣̅𝒩,ℳ =  
1

ℳ
 ∑ 𝑣𝒩

𝑚ℳ
𝑚=1   

             𝛿𝑣̅𝒩,ℳ

2 =
1

(ℳ−1) ℳ
 ∑ (𝑣𝒩

𝑚 − 𝑣̅𝒩,ℳ)2ℳ
𝑚=1  

where 𝑣𝒩
𝑚 is the optimal objective function value, 𝑣̅𝒩,ℳ the average objective function value 

denotes a statistical lower bound on the optimal objective function value for the original 

problem (1)–(13) (Norkin et al. 1998), (Mak et al. 1999), and (Verweij et al. 2003). 

3. Find a feasible first-stage solution 𝑥̅ and estimate the objective function value of the original 

problem with sample size 𝒩′ which is very larger than 𝒩. 𝒩′ is generated independently of 

the samples used in the SAA problems. Since the first-stage solution is fixed and this step 

involves the solution of the second-stage problems, we can choose 𝒩′ larger than 𝒩. 

             𝑔̂𝒩′(𝑥̅ ): =  ∑ 𝜌𝑗   .  𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇  +  
1

𝒩′ 
  ∑ 𝑓(𝑥, 𝜔𝑛)𝒩′ 

𝑛=1                                  𝑗 𝜖 ℛ   

The estimator 𝑔̂𝒩′(𝑥̅ ) is an upper bound on the optimal objective function value. We can 

estimate the variance of  𝑔̂𝒩′(𝑥̅ )as follows: 

𝛿𝒩′ 
2 (𝑥̅ ) =

1

(𝒩′−1) 𝒩′  ∑ (∑ 𝜌𝑗  . 𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇 + 𝑓(𝑥, 𝜔𝑛) −   𝑔̂𝒩′(𝑥̅ ) 𝑗 𝜖 ℛ )2𝒩′

𝑛=1   

4. Calculate the estimators for the optimality gap and its variance. Referring to steps 2 and 3, 

we obtain: 

𝑔𝑎𝑝𝒩,ℳ,𝒩′(𝑥̅) = 𝑔̂𝒩′(𝑥̅ ) − 𝑣̅𝒩,ℳ  

2.5 Demand Generation 

Demand parameters are parts of inputs for two-stage SMILP model. We assume the number 

of patients asks for appointment are uncertain and generate demand for appointment requests for 

many scenarios. Demand is generated with respect to these scenarios: We assume six-month time 

horizon which patient calls arrive in the first four months and their desired time could be from when 

they call until the end of time horizon (six months). In demand generation, we assume the difference 
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between call day and desired day of a week (5 days) and the difference between call week and desired 

week follow distributions. Reviewing other literature, e.g. (Liu et al. 2010), (Patrick et al. 2008), and 

(Gupta & Denton 2008), we assume the daily patient arrival follows the Poisson distribution. 

2.6 Dynamic Appointment Scheduling   

After finding an optimal weekly appointment scheduling pattern from the two-stage SMILP  

model, the call center uses the solution from the two-stage SMILP on daily dynamic appointment 

assignment. This is referred to as Call Center appointment assignment. Next, we simulate the call center 

with demand generation and develop the heuristic policy to assign an appointment time to each patient 

arrival. Patients are quoted their appointment times upon requests for appointment. The sequence of 

appointments may change over time as the appointment schedule evolves; however, once an 

appointment time is assigned for a given patient, it cannot be changed. Our demand generation has 

these parameters: patient type, provider, call time, and desired time for one scenario. Upon arrival of 

each appointment request for a day, the appointment is offered with respect to the sorted max capacity 

in the first week from the patient’s desired time. If an appointment is not accepted by the patient 

within the first week, the first available appointment time in the remaining month will be offered, 

then, if patient still doesn’t accept the appointment in the first month, we offer the available time-slot 

in the remaining time window until the patient accepts the appointment time. We summarize the index 

heuristic policy below. 
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   Index heuristic policy:  

---------------------------------------------------------------------------------------------------------------------------- 

Input weekly appointment scheduling template S, demand set D for time horizon 𝑇,  

           and appointment acceptance threshold τ     

 1:     for demand arrival D in day 𝑖: 

 2:            𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  {} 

 3:            for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇}:  

 4:                   find the corresponding capacity for time slot 𝑡, 𝐼𝑡 =  𝑥𝑡,  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝐼𝑡 

                      where DT is patient’s desired time, 𝑇 is one-week time window, 

 5:            for 𝑗 ∈ 𝑙𝑒𝑛𝑔𝑡ℎ { 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦}: 

 6:                   find 𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑡), 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇}and offer time slot 𝑡∗ to the patient, 

 7:                   If τ meets, update 𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1; 

                          otherwise, go to step 8 

 8:             for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇′}: 

 9:                   search the first available slot, 𝐼𝑡 =  𝑥𝑡, 𝑥𝑡 > 0, 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇′}, where 𝑇′ 

                      is one-month time window 

10:                 If τ meets, update 𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1; 

                      otherwise go to step 11; 

11:           for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇”}: 

12:                 assign appointment slot in the remaining time horizon 𝑇”, for 𝐼𝑡 =  𝑥𝑡, 𝑥𝑡 > 0, update 

                      𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1. 

 

Output: updated weekly appointment scheduling template 𝑆.  

 

Note that the remaining time window threshold after the first week horizon depends on the patient 

type urgency. For some patients we may need to consider one month, whereas for other patient types 

this threshold could be in months. It depends on the patient service category. 

2.7 Clinic simulation   

As we discussed in the literature review section, most of the research done on outpatient clinics 

aims to minimize the direct waiting time of the clinic in the model formulation of two-stage mixed 

integer programming. However, we monitor the clinic waiting time of the system by simulating the 

clinic using the following formulation. We check the daily expected waiting time of the clinic for a 

sequence of patients for a given day. After each day, we check if the expected waiting time of the clinic 
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for the given day is greater than some threshold; we avoid creating such a sequence of patients in the 

future of the planning horizon by removing that sequence in the first-stage of the model formulation, 

using constraint (9). This approach will affect other flow metrics such as the system’s over time and 

idle time. The clinic has multiple servers, and service times in each server are random variables. The 

objective is to minimize the expected patient waiting time, as well as the provider’s overtime and idle 

time with respect to the established day length, 𝓈. Figure 3 depicts the appointment start time and 

process time for scenario ω for a single server 𝓀 in the clinic. 

          𝑥1                          𝑥2                                                       𝑥𝑛−1                 

 

Appointment                Day length (𝓈) 

   Start time                                 

     

 

Process time 

for scenario ω 

 

Fig. 3. Appointment start time and process time for scenario ω for a single server 𝓀 in the clinic    

We calculate patient waiting time 𝑊𝑖,𝓀 by developing formula that consider multiple servers   

in the system. Moreover, provider’s over time and idle time can be calculated by 𝑙𝑖,𝓀 and 𝐼𝑑𝑖,𝓀: 

𝑊1,𝓀 = 0      , ∀ 𝓀 = 1, … , 𝑘 

𝑊𝑖,𝓀 = (𝑊𝑖−1,𝓀 +  𝑍𝑖−1,𝓀 −  𝑥𝑖−1,𝓀)+   , 𝑖 = 2, … , 𝑛, 𝓀 = 1, … , 𝑘  

𝐼𝑑𝑖,𝓀 =  (−𝑊𝑖−1,𝓀 −  𝑍𝑖−1,𝓀 +  𝑥𝑖−1,𝓀)+   , 𝑖 = 2, … , 𝑛, 𝓀 = 1, … , 𝑘  

𝑙𝑖,𝓀 = (𝑊𝑛,𝓀 +  𝑍𝑛,𝓀 +  ∑ 𝑥𝑖,,𝓀
𝑛−1
𝑖=1 − 𝓈)+  

 

where 𝑍𝑖,𝓀 is the independent and identically distributed service duration for patient 𝑖 at clinic room 

𝓀, 𝑥𝑖,𝓀 is customer allowance (inter-arrival time between patient 𝑖 and 𝑖 + 1),  (. )+ indicates max(. ,0) 

and 𝑑 is session length. The total waiting time of the system for a given day equals ∑ ∑ 𝑊𝑖,𝓀𝓀𝜖𝜉   𝑖𝜖𝛽 , 

where 𝛽 is the set of patients scheduled for an individual clinic day, 𝜉 is the set of clinic rooms in the 

Patient 1 
Start time 

 

 

Patient 2 
Start time 

 

 

Patient 3 
Start time 

 

 

Patient n-1 
Start time 

 

 

Patient n 
Start time 

 

 

𝑍1,𝓀(ω) 𝑍2,𝓀(ω) 𝑍3,𝓀(ω) 

 

𝑍𝑛−1,𝓀(ω) 𝑍𝑛,𝓀(ω) 

𝑊1,𝓀 𝐼𝑑2,𝓀 

 

𝑙𝑖,𝓀 𝑊𝑛−1,𝓀 
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clinic, 𝑘 is the number of clinic rooms, and 𝑛 is the number of patients. The flow of patients at the 

clinic are shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

                                                                            Yes 

         

 

                                                                                          

            No 

 

 

 

Fig. 4. Flow of OBGYN patients in the clinic 

 

2.8 Case Study 

In this section, we report a case study that demonstrates how well the proposed mean-risk two  

-stage SMILP model approach performs in terms of the multi-category outpatient appointment 

scheduling for the women’s clinic studied. The clinic characteristics and patient demand data used in 

the case study are acquired from the literature of women’s specialty clinics. The values of the 

parameters in the risk-neutral two-stage SMILP model are selected from (Qu et al. 2013) and (Lenin 

et al. 2015) as well as some from preliminary numerical experiments and are denoted in Table 5. 

 

 

Registration Exam room with nurse Arrival 

 

Lab work 

Dr. Appointment 

 

Check out 

 

Exit 

 

New Low-Risk OB 

New GYN 

Follow Up Low-Risk 

OB 

Follow Up High-Risk 
OB 

MAU GYN 

Established GYN 

Results GYN 

 

 

New 

Patients? 
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2.8.1 Data and study design 

Studying the literature in OBGYN clinics, the common issue is related to the time, equipment 

and exam rooms scheduled for several service categories. Since each patient type needs specific 

services such as prenatal and follow-up care for routine pregnancy, high risk pregnancy, management 

of miscarriage in new and follow up cases with different exam equipment and resources, (Qu et al. 

2013) divided patient types with respect to required service types into three categories. Consequently, 

there are seven patient types with respect to the expected service time duration for each patient type 

(Table 2). In this case study, each clinic session is defined as a day and is divided into 16 time slots 

with the identical service time of 15 minutes. There are two providers available on all days of the week 

who can provide all service categories for different patient types. Patients are scheduled with any 

available provider in each clinic session (morning/afternoon). Service time duration for different 

stations in the clinic such as time spent at registration, with a nurse or provider, lab work and check-

out are included in the clinic simulation and taken from (Qu et al. 2013) and (Lenin et al. 2015). In the 

research by (Lenin et al. 2015), data are collected from the West Little Rock (WLR) clinic operated 

under the University of Arkansas for Medical Sciences (UAM). In the case study, we use two demand 

cases. In the first case, the average weekly number of demands is taken from (Qu et al. 2013), and as 

we expect increase in future demand, in order to estimate the scalability of the solutions, the demand 

was increased twofold. Table 4 shows the weekly demand cases with service time duration and the no-

show rate. The proposed risk-neutral two-stage SMILP approach is used to determine weekly 

scheduling templated for these two cases. 
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Service 

Category 
Service Type 

Service time (minutes) 
no-show 

rate 

Avg. number of 

requests 

for service 

Avg. Std. Distribution 

LN(μ, δ2) 

 Case-1 Case-2 

Low Risk OB 
New Low-Risk OB 
Follow Up Low-Risk OB 

25 
6 

8 
3 

LN(3.17, 0.10) 
LN(1.68, 0.22) 

 
0.162 
0.053 

 

4 
22 

 
8 
44 

High Risk OB Follow Up High-Risk OB 10 
 
6 
 

LN(2.15, 0.31) 0.080 35 70 

Gynecology 

New GYN 
MAU GYN 
Established GYN 
Results GYN 

18 
13 
10 
15 

12 
3 
5 
4 

LN(2.71, 0.37) 
LN(2.54, 0.05) 
LN(2.19, 0.22) 
LN(2.67, 0.07) 

0.488 
0.487 
0.384 
0.321 

16 
4 
17 
5 

32 
8 
34 
10 

Nurse All service category 

  
LL(100,2.92,417) 
/ 60.0 

  

 
Table. 4. Weekly demand, no-show rate, and service time distribution for each patient types (time spent with 
provider and nurse) 

 

We assume that there are 2 sessions: morning and afternoon, and each session has 8 time- 

slots. Based on the data driven from (Qu et al. 2013) in OBGYN clinics, services rendered for different 

patient types are considered in different sessions of a week day. Moreover, women’s clinics consider 

appointment scheduling for all providers in a clinic and not for specific ones. Therefore, patients can 

be seen by any available provider upon their appointment time depending on the availability of 

multiple providers in any clinic session. Since multiple providers are assigned for each day, 

overbooking is allowed for each time slot.  
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Notatio

n 

Description Value 

K Total number of physicians available in each clinic 

session 

2 

N 

 

  

Number of time slots in each clinic session   16 

Δj  Cost of additional capacity of provider [2000, 2000] 

aj  Number of new patients desired by provider [10,10] 

cfi  Risk factor for patient type [1.67, 0.4, 0.67, 1.2, 0.87, 0.67, 1] 

CFj  Risk factor for provider [1.67, 1.67] 

tlrj  Tolerance factor of provider [4.5, 4.5] 

ρj  Cost of new patient type for provider 1.7 

cj  Free capacity for provider, jϵ ℛ over time horizon T [2, 2] 

Μ  A large number 4.8 

𝒮  Set of morning/afternoon sessions over time horizon T 8 

ℊ  Patient acceptance threshold for the first week 0.5 <= threshold< 1 

ℑ  Patient acceptance threshold for one month 0.2 <= threshold< 0.5 

Τ  Time horizon 120 days 

𝒻  Steady state 61– 100 days 

 
Table. 5. Two-stage SMILP model setting parameters in the case study 

 

2.9 Computational Results 

The calculations were carried out on a Dell, 64-bit operating system, and 80 GB RAM. The  

solution scheme is implemented in Python 2.7.12. Gurobi is used as a solver for two-stage SMILP and 

SAA. In this section we present the significance of applying risk-neutral two-stage SMILP approach 

versus base-case scenario. We define base-case scenario with simulating clinic and call center using the 

same scenario as we design in risk-neutral two-stage SMILP approach. In the call center simulation, 

we consider corresponding risk factor for each patient type and each provider for each time-slot as 

well as each day sessions: morning and afternoon meaning the capacity of each time slot cannot exceed 
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the risk factor of individual providers and for the appointment scheduling we use the same index 

heuristic policy as we used in risk-neutral two-stage SMILP approach. Similarly, we use the same rules 

for clinic simulation and find direct waiting time and indirect waiting time. We consider three threshold 

levels by calculating 50%, 65%, and 80% quantiles of daily expected waiting time for two months’ 

time horizon to check whether the daily patient flows are satisfactory.  

2.9.1 Comparison of patient flow metrics considering all patient types between Two-stage 
SMILP and base-case for case-2 demand scenario 

Considering different threshold levels for patient flow metric distributions, Fig 5, 6, and 7 co-  

mpare direct wait time distributions for providers for case-2 demand scenario between base-case and 

Two-stage SMILP with threshold levels:  = 50%, 65%, and 80% quantiles. Following the figures, the 

average wait time for solutions based on two-stage SMILPs is less than that of base-case, denoting 

16%, 6%, and 3% improve for all threshold levels in the SMILPs compared to base-case. 

Direct Wait Time Distribution        

                        

Fig 5. Direct wait time distribution for providers for case-2 demand scenario, comparing base-case 

and Two-stage SMILP with threshold level:  = 50% quantile 
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Direct Wait Time Distribution 

                            
Fig 6. Direct wait time distribution for providers for case-2 demand scenario, comparing base-case 

and Two-stage SMILP with threshold level:  = 65% quantile 

 

 

Direct Wait Time Distribution 

 
Fig 7. Direct wait time distribution for providers for case-2 demand scenario, comparing base-case 

and Two-stage SMILP with threshold level:  = 80% quantile 
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2.9.2 Comparison of patient flow metrics for patient type-1 between Two-stage SMILP and 
base-case for case-2 demand scenario 

Considering different threshold levels for patient flow metric distributions, Fig 8 compares  

the direct wait time distributions for patient type-1 for case-2 demand scenario between base-case and 

two-stage SMILP with threshold levels:  = 50%, 65%, and 80% quantiles. As shown in the Figure, 

the average waiting time in two-stage SMILP is less than that of base-case with improving 23%, 19%, 

and 27% for three threshold levels. At threshold level  = 50%, median is 20 minutes which is less 

than other threshold levels 65%, 80% and the base-case in order, which shows that fifty percent of 

population has a waiting time under 20 minutes. Moreover, 25% of population in threshold level  = 

50% has a waiting time under 1 minute, and between 65% and 80% under 2 minutes, and in 

comparison to base-case, 25% of the population experience waiting time under 7 minutes which shows 

two-stage model results are much more robust. The graphs in Fig 8 is for patients with more criticality 

factor, patient type 1. We refer the graphs for other patient types in appendix.    

Direct Waiting Time 

 

              base−case                     80%                          65%                             50% 

Fig 8. Direct wait time distribution for patient type-1 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
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2.9.3 Trade-off between direct wait time and indirect wait time considering all patient types 
between Two-stage SMILP and base-case for case-2 demand scenario 
 

Fig 9 represents the direct wait time distribution for different threshold levels  = 50%, 65%, 

 and 80% quantiles. Fig 10 compares the average wait time for all threshold levels which shows average 

wait time is higher in threshold level  = 80%, 65%, and 50% respectively. In Fig 11 and 12, indirect 

wait time (delay) distribution, compares two-stage SMILP for case-2 demand scenario with threshold 

levels:  = 50%, 65%, and 80% quantiles and base-case. The two-stage SMILP assigns appointment 

within two weeks while in the base-case, there are assigned appointment for weeks one, two, three, 

and four. It shows that two-stage SMILP results in less appointment delay compared to the base-case. 

As per in Fig 10, the average waiting time is higher in the base-case, 80%, 65%, and 50% threshold 

level in that order. Therefore, we expect the crowded clinic days for indirect wait time in the same 

order as shown in Fig 11 and 12. Moreover, as represented in Fig 11 for the base-case, we conclude 

that it has appointment slots with highest waiting times. since it has not only busy clinic days (more 

appointments in the first 2 weeks) compared to other threshold levels but also it has some 

appointments for weeks 3 and 4.  

Direct Wait Time 

 
Fig 9. Comparing direct wait time distributions for Two-stage SMILP with threshold levels:  = 

50%, 65%, and 80% quantile and base-case for providers for case-2 demand scenario    
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Direct Wait Time Distribution 

 
Fig 10. Comparing average wait time for Two-stage SMILP with threshold levels:  = 50%, 65%, and 

80% quantile and base-case for providers under case-2       

    

 

Indirect Wait Time 

 
Fig 11. Indirect wait time distribution for case-2 demand scenario, comparing base-case and Two-

stage SMILP with threshold levels:  = 50%, 65%, and 80% quantiles 
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Indirect Wait Time 

 
Fig 12. Indirect wait time distribution for case-2 demand scenario, comparing Two-stage SMILP with 

threshold levels:  = 50%, 65%, and 80% quantiles and the base-case 

 

2.9.4 Trade-off between direct wait time and indirect wait time for each patient type 
between Two-stage SMILP and base-case for case-2 demand scenario 

Fig 13 represents the trade-off between direct wait time and indirect wait time distributions  

for SMILP with different threshold levels  = 50%, 65%, and 80% quantiles and the base-case. The 

average waiting time is higher in the base-case, 20 minutes, compared to other threshold levels. 

Therefore, we expect the crowded clinic days for indirect wait time in the beginning of the time 

horizon compared to other threshold levels. The base-case shows a weaker result compared to the 

two-stage stochastic programming; since it has more appointments in the first 2 weeks and some 

appointments for weeks 3 and 4. The graph depicts criticality factors for the patient type 1. We refer 

the graphs for other patient types in appendix.    

Table 6 and 7 show the advantage of using two-stage SMILP over base-case; improving  

average direct waiting time and indirect waiting time when applying two-stage SMILP. 
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                      Indirect Waiting Time                                                         Average Waiting Time 

                                          

         base−case           80%            65%               50%                                                    base−case             80%                     65%                   50% 

Fig.13. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantiles and base-case for patient type-1 for 
case-2 demand scenario 
 

Threshold Levels  = 50%  = 65%  = 80% 

Patient type-1 23% 19% 27% 

Patient type-2 11% 10% 10% 

Patient type-3 49% 38% 27% 

Patient type-4 12% 13% 3% 

Patient type-5 20% 31% 13% 

Patient type-6 23% 18% 23% 

Patient type-7 34% 87% 44% 

All patient types 16% 6% 3% 

 
Table 6. Improving average direct waiting time when applying two-stage SMILP 
 
 

Time-window  = 50%  = 65%  = 80% 

Week-1 6% 5% 1.2% 

overall 13.5% 12% 7% 

 
Table 7. Improving indirect waiting time when applying two-stage SMILP 
 
2.9.5 Optimal weekly scheduling template  

In this section the optimal weekly scheduling template for case-1 and 2 demand scenarios are  

presented. We calculate and summarize the system’s utilization based on the available data in table 4 

with available weekly 40 hours for two providers and present them in table 8 below. The statistics 

shows system reaches steady state in both cases of demand scenarios.  
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Demand 
Scenario 

Total Weekly 
Time(mins) 

Utilization 
Idle 
time 

Avg. appointment time 
(mins) 

Appointment 
number 

Appointment 
number Our 

scheduling result 

Case-1 1167 48% 52% 11.33 211.82 160 

Case-2 2303 96% 4% 11.34 211.55 230 

  

Table 8. Statistics of the system’s utilization based on the available data  
 

Table 9 shows the scheduling template of free time slots for providers for office work/ lunch  

for case-2 demand scenario. This result is the best one in many runs of scenarios. In Table 10 and 11 

we calculate the expected service time (minutes) for our scheduling templates using the data in Table 

4. Tables 12 and 13 represent the optimal weekly scheduling template for case-1 and case-2 demand 

scenarios respectively, where NL, FL, FH, NG, MG, EG, and RG stand for New Low-Risk OB, 

Follow Up Low-Risk OB, Follow Up High-Risk OB, New GYN, MAU GYN, Established GYN, and 

Results GYN in order. 

Slot Index Mon Tue Wed Thu Fri 

9        

10        

11        

12        

13        

14        

15        

16        

 
Table 9. Free time slots for providers for office work/ lunch – case-2 demand scenario 
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Slot Index Mon Tue Wed Thu Fri 

1 12 12 12 6 20 

2 12 24 12 16 20 

3 19 12 24 30 20 

4 25 25 16 20 12 

5 20 25 12 16 22 

6 12 16 27 24 12 

7 20 16 16 25 12 

8 16 12 21 21 24 

9 21 28 16 25 36 

10 20 24 20 33 25 

11 20 33 24 25 21 

12 23 21 16 0 43 

13 12 18 25 21 28 

14 12 21 16 30 20 

15 23 20 24 25 35 

16 12 24 12 16 20 

Day.average.time(mins) 17.44 20.69 18.31 20.81 23.33 

 
Table 10. Expected service time (minutes) for each time slot – case-1 demand scenario 
 

 

Slot Index Mon Tue Wed Thu Fri 

1 18 30 30 35 20 

2 22 25 26 38 26 

3 26 22 26 24 20 

4 26 30 38 20 30 

5 29 41 30 20 38 

6 26 30 34 35 38 

7 30 26 16 35 40 

8 26 22 26 44 30 

9 29 22 20 23 0 

10 16 50 33 45 30 

11 22 42 46 24 40 

12 23 46 30 20 49 

13 33 22 22 34 44 

14 22 22 40 20 44 

15 26 22 40 35 44 

16 38 50 22 34 0 

Day.average.time(mins) 25.75 31.375 29.9375 30.375 30.8125 

 
Table 11. Expected service time (minutes) for each time slot – case-2 demand scenario 
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Slot 
Index 

Mon Tue Wed Thu Fri 

1 FL-FL FL-FL FL-FL FL FH-FH 

2 FL-FL FL-NG FL-FL FL-FH FH-FH 

3 FL-MG FL-FL FL-NG RG-RG FH-FH 

4 FH-RG EG-RG FL-FH FH-EG FL-FL 

5 FH-FH EG-RG FL-FL FL-FH FL-FL-FH 

6 FL-FL FL-FH FL-FL-RG FL-NG FL-FL 

7 FH-FH FL-EG FL-FH FH-RG FL-FL 

8 FL-EG FL-FL FL-RG FL-RG FL-NG 

9 FL-RG FH-NG FL-EG FH-RG NG-NG 

10 FH-FH FL-NG FH-EG NG-RG FH-RG 

11 FH-FH NG-RG FL-NG FH-RG FL-RG 

12 FH-MG FL-RG FL-FH FREE FH-NG-RG 

13 FL-FL NG-FREE FH-RG FL-RG FH-NG 

14 FL-FL FL-RG FL-FH RG-RG FH-FH 

15 FH-MG EG-EG FL-NG FH-RG NL-EG 

16 FL-FL FL-NG FL-FL FL-FH FH-FH 

 
Table 12. Weekly scheduling template for case-1 demand scenario 

 

Slot 
Index 

Mon Tue Wed Thu Fri 

1 FL-FL-FL FH-FH-EG FH-FH-FH FH-NL FH-FH 

2 FL-FL-FH FL-FL-MG FL-FH-EG FH-NG-EG FL-FH-FH 

3 FL-FH-EG FL-FL-FH FL-FH-FH FL-NG EG-FH 

4 FL-FH-EG FH-EG-EG MG-EG-RG FH-FH FH-FH-FH 

5 FL-FH-MG FH-NG-MG FH-EG-EG FH-FH FH-FH-NG 

6 FL-FH-FH FH-FH-EG FL-FH-NG NL-EG FH-FH-NG 

7 FH-EG-EG FL-FH-EG FL-EG FH-FH-RG FL-FL-FH-NG 

8 FL-EG-EG FL-FL-FH FL-FH-EG FL-FH-NG-EG FH-FH-FH 

9 FL-FH-MG FL-FL-FH FH-FH FH-MG FREE 

10 FL-EG NL-FH-RG NG-RG NL-FH-EG FH -EG-EG 

11 FL-FL-FH FL-NG-NG FH-MG-MG-EG FL-NG FH-FH-EG-EG 

12 FH-MG FH-MG-MG-EG FH-FH-EG FH-FH FL-FH-NG-RG 

13 FH-FH-MG FL-FL-FH FL-FL-FH FL-FH-NG FL-FH-FH-NG 

14 FL-FL-FH FL-FL-EG FH-FH-EG-RG FH-FH FL-FH-FH-NG 

15 FL-FH-FH FL-FL-FH FL-FL-FH-NG FL-FL-FH-MG FL-FH-FH-NG 

16 FH-FH-NG NL-FH-RG FL-FL-EG FL-FH- NG FREE 

 
Table 13. Weekly scheduling template for case-2 demand scenario 
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2.9.6 Sample Average Approximation (SAA) 

 

To estimate a lower bound for risk-neutral SMILP, we choose 𝒩 = 20, and 50 scenarios  

which is repeated M = 20 times. Average of 20 runs is an estimate of lower bound on the objective 

value. A sample of 𝒩′= 1000 scenarios, which is generated independently of the samples were used 

to get the lower bound, is selected to estimate an upper bound for the optimal solution. In Table 13, 

upper and lower bounds for objective function value using SAA method is presented. 𝑔𝑎𝑝% and 

𝑔𝑎𝑝𝑁,𝑀,𝑁′ indicate the differences between upper and lower bounds. Table 14 shows problem with 

50 scenarios results in minimum gap percentages which has been used in our experimental settings.  

Case 𝒩 
Lower bound Upper bound   

Average 𝜎𝐿𝐵 Average 𝜎𝑈𝐵 𝑔𝑎𝑝𝑁,𝑀,𝑁′ 𝑔𝑎𝑝% 

CD1 
20 191,000 3,235 194,684 2,589 3,684 1.92% 

50 189,000 2,827 192,254 1,925 3,254 1.72% 

CD2 

   

20 228,000 2,949 231,152 1,752 3,152 1.38% 

50 228,000 1,883 230,960 1,354 2,960 1.29% 

 

Table 14. Statistical lower and upper bounds of the SAA problems for M = 20 and 𝒩′= 1000 
CD1: Case-1 Demand, CD2: Case-2 Demand 

2.10 Conclusion  

In this chapter, we presented methods for improving flow through outpatient clinics focused 

on OBGYN clinics considering effective appointment scheduling policies by applying Two-Stage 

Stochastic Mixed-Integer Linear Program Model (two-stage SMILP) approaches to improve patient 

flow metrics: direct wait time (clinic wait time) and indirect wait time. The mathematical formulation 

of the problem can be applied to any scheduling modeling in health care that consists of multiple 

patient types with no-show behavior as well as stochastic servers, follow-up surgery appointments, 

and overbooking. We model the scheduling problem with many scenarios under certain realization in 

the second-stage of the problem and examine the effect of this modeling on the first-stage decisions. 
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Due to the size of the problem instances, a sample average approximation method is used to solve 

our problem. As we look at the results, we see two-stage SMILP with threshold levels  = 50%, 65%, 

and 80% results in better direct and indirect waiting time comparing to the base-case, where average 

waiting time improved by 16%, 6%, and 3% and indirect waiting time improved by 13.5%, 12%, and 

7% for all threshold levels. In our case we run two-stage SMILP once and then use the weekly 

scheduling template as a guideline for the whole time horizon.  

One contribution to this chapter is considering how often the two-stage SMILP needs to be  

run depending on the available data for seasonality purposes in the different clinics. Another 

contribution could be on appointment policies in call-center. One may modify the heuristic policy and 

discuss on different rules in appointment assignment considering multiple patient types along with 

each type preferences. Next contribution is related to risk-averse models. Risk-averse objectives can 

be used instead of risk-neutral objectives in order to control the variability of the target performance 

measures. A few optimization studies propose risk-averse objectives, such as the Markowitz mean-

variance method (e.g., (Mak et al. 2015); (Qu et al. 2012)) and the Von Neumann–Morgenstern 

expected utility method (e.g., (Kemper et al. 2014); (Kuiper & Mandjes 2015); (LaGanga & Lawrence 

2012); (Vink et al. 2015)). In the proposed risk-neutral two-stage stochastic model we consider 

expected value as a performance measure while in a research extension one can use Conditional-Value-

at-Risk (CVaR) as a performance measure adding the presence of the risk to the model and evaluate 

the result.    
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CHAPTER 3: RISK-AVERSE TWO-STAGE STOCHASTIC PROGRAMMING MODEL 
TO OPTIMIZE THE PATIENT FLOW METRICS AT OUTPATIENT CLINICS 
 
3.1 Introduction 

Risk-neutral two-stage stochastic programming is a long-established approach that has been  

used in many studies. This method considers the expected value in the objective function as the 

preference criterion. Moreover, as we discussed in chapter 2, in two-stage stochastic programming the 

objective function of the second-stage problem, known as the recourse (cost) function, is a random 

variable. Therefore, the total cost function is a random variable, and determining the optimal decision 

of the first-stage leads to the problem of comparing random cost variables. However, comparing 

random variables is one of the main streams in decision theory in the presence of uncertainty in the 

system, so it is important to consider the effect of variability and specify the preference relations 

among the random variables using risk measures. 

(Daniels et al. 1995) indicate that a critical disadvantage of using the expected value as a perfor-  

mance measure is that it does not account for the risk averse attitude of a decision-maker. In recent 

years, one of the main approaches in the practice of decision making under risk is mean-risk models, 

and many researchers have used several varieties of risk measures in their models. (Markowitz 1952) 

and (De et al. 1992) used variance as the risk measure. The solution to these problems results are 

inferior, and in the case of a scenario-based approach, the sample variance of any given performance 

measure involves a quadratic expression, which makes the optimization problem comparatively hard 

to solve. To remedy this drawback, risk averse approaches are introduced and CVaR is one such 

approach.  CVaR has attracted much attention in recent years. It has been used in research areas such 

as financial risk management, machine scheduling problems and healthcare (Morgan 1994), (Duffie & 

Pan 1997), (Ogryczak & Ruszczyński 2002), (Sarin et al. 2014) and (Qi, J., 2017). CVaR simultaneously 

reduces both the expected value and variance of a performance measure while keeping the linearity 

whenever the expectation can be represented by a linear expression as in our case. Reported by (Sarin 
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et al. 2014), it adds benefit over traditional nonlinear problems using expectation-variance methods as 

well.  

In another study by (Schultz & Tiedemann 2003) excess probability has been studied as anoth- 

er risk measure. They confirm that excess probabilities lead to a risk measure which is consistent with 

the first-degree stochastic dominance relation. They consider linear two-stage stochastic programs 

with a mixed-integer recourse and propose a scenario decomposition algorithm for computational 

results. 

In this chapter, we investigate the effects of varability in the system by introducing the Condit-  

ional-Value-at-Risk (CVaR) as the risk measure and compare the results with expected value approach. 

In other words, we consider a risk-averse two-stage stochastic programming model, where we specify 

the Conditional-Value-at-Risk (CVaR) as the risk measure. We believe that this criterion is an effective 

method to find risk-averse solutions for stochastic programming with applications in scheduling. We 

apply the proposed model to healthcare operational management, which is one of the research fields 

that can significantly benefit from risk-averse two-stage stochastic programming models in the 

presence of uncertainty in demand. We present numerical results to discuss how incorporating a risk 

measure affects the optimal solutions and demonstrate the computational effectiveness of the 

proposed methods. 

In particular, we consider the problem of determining methods for improving patient flow  

metrics in outpatient clinics introducing effective appointment scheduling policies by applying the 

mean-risk Two-Stage Stochastic Mixed-Integer Linear Program (two-stage SMILP) approach is 

utilized to improve patient flow metrics: direct wait time (clinic wait time) and indirect wait time 

considering patient’s no-show behavior, stochastic server, follow-up surgery appointments, and 

overbooking. We develop two models: first, a method to optimize the (weekly) scheduling pattern for 

individual providers that would be updated at regular intervals based on the type and mix of services 
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rendered, and second, a method for dynamically scheduling patients using the weekly scheduling 

template. Scheduling will entertain the possibility of arranging multiple appointments at once. The aim 

is to increase throughput per session while providing timely care, continuity of care, and overall patient 

satisfaction as well as equity of resource utilization. In chapter two, we developed the risk-neutral 

approach by minimizing the expected value as a performance criterion without considering risk in the 

system. However, considering a risk in the model (in the presence of random variables, cost function) 

is an important factor in healthcare engineering. In chapter three, we model risk-averse two-stage 

stochastic programming by considering CVaR as a risk measure. For computational results we find 

the distributions for patient flow metrics and show the advantages of cosidering risk measure in the 

model.  

This chapter is organized as follows. Section 3.2 reviews the relevant literature. Section 3.3  

describes model assumptions and framework. Section 3.4 formulates a two- stage mean-risk stochastic 

programming. Solution of the two-stage SMILP provides the optimal capacity assigned for each time 

slot. Section 3.5 explains a demand generation simulation. In section 3.6, we introduce a dynamic 

appointment scheduling policy for actual appointment assignment for different patient types. Section 

3.7 explains clinic simulations and direct wait time. In this section we calculate the direct wait time 

experienced by individual providers. Section 3.8 describes the case study and data driven from 

literature. Section 3.9 provides future research in appointment scheduling. 

3.2 Literature review 

We categorize the literature review into two sections: first, we briefly review the literature in   

appointment scheduling focused on outpatient clinics. For a comprehensive review we refer the reader 

to chapter 2. Then, we investigate surveys using risk measures in objective functions and their 

advantages over the traditional case using expected value. 

Referring to (Ahmadi-Javid et al. 2017), decision making in outpatient appointment scheduling  
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can be classified into three categories: strategic, tactical, and operational decisions which are long, 

medium and short-term decisions, in that order. Strategic decisions deal with areas of research on 

access policy, the number of servers, policy on acceptance of walk-ins, and type of scheduling. On the 

other hand, tactical/planning decisions determine how several groups of patients are scheduled, and 

decisions on allocation of capacity to patient groups, appointment slot (interval), appointment 

scheduling window, and priority of patient groups are made whereas operational decisions are related 

to scheduling each patient upon his/her request. In other words, it includes decisions related to the 

allocation of patients to servers/physicians, appointment day/time, patient acceptance/rejection, and 

patient sequence. The majority of researchers have focused on operational decisions and tactical 

decisions, but few are available on strategic decisions, which is a broad area for future work.  

In general, the performance measure of every health care system involves two aspects:  

patients’ perspectives and providers’ perspectives. We aim to improve the performance measure of an 

outpatient clinic through appointment scheduling considering several criteria: one belongs to patient 

satisfaction measurement such as waiting time (direct and indirect) which is the most common issue 

in outpatient appointment scheduling. One commonly used service quality measure for describing this 

preference is patient expectation. However, the expected waiting time criterion may not satisfactorily 

distinguish patients’ attitudes toward uncertain delays because it corresponds to the average delay 

experienced by the patient over a potentially infinite number of visits under the same identical 

conditions. Patient waiting time (direct/indirect waiting time), continuity of care and patient 

preferences are factors used to measure patient satisfaction. Moreover, patient waiting time, provider 

over time and provider idle time are the most common performance metrics used in optimization 

studies. On the other hand, considering indirect waiting time (i.e., the time between the appointment 

request and the scheduled appointment time) in the objective functions as well as patient preferences 

in appointment scheduling are mostly referred to future studies as it requires complexity in calculations 
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(Gupta & Denton 2008), and only a few articles such as (Zacharias & Armony 2016) have this 

contribution in their work.  

(Cartwright et al. 1992) and (McCarthy et al. 2000) declared that a certain waiting time can be  

acceptable among patients from the patients’ perspective and (Camacho et al. n.d.) stated that 

dissatisfaction with the waiting process may not increase proportionally with the length of the waiting 

time. In a survey by (Hill & Joonas 2005), 86% of patients accept 30 minutes or fewer as an acceptable 

threshold for waiting time while in research conducted by (Huang 1994), empirical results disclose 

patients’ acceptable threshold level of waiting time as on average pf 37 minutes, and their patience 

may decline when the service delay exceeds this threshold. Another perspective is physicians’ 

tolerance; their key performance indicator lies in the proportion of patients seen within a certain time 

window/threshold level, instead of the total expected waiting time. Reported by the United States and 

United Kingdom (National Health Service) and (RE, H. 2006), 30 minutes is considered as an 

acceptable threshold level from patients’ perspectives.  

In another study by (Toh & Sern 2011) on orthodontic specialist clinics, for those patients  

arrive on time at the clinic, the percentage of patients that can be seen within 30 minutes of the 

appointment time should be greater than 50%, whereas in an operating theater of a local hospital in 

Singapore, less than 30% of patients assigned for surgery experienced more than 30 minutes waiting 

time. Following these empirical results, some researchers use a tolerance threshold to describe patient 

satisfaction with waiting processes and take the frequency of delays above this threshold as a service 

quality measure.  

(Qi, J., 2017) proposed a method to address the displeasure of both patients and physicians by  

balancing the service levels and time measures in the system. A threshold-based performance measure 

known as Delay Unpleasantness Measure is introduced to assess uncertain delays. Applying this 

method, the frequency and intensity of a system’s satisfaction measures such as patient waiting time 
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and provider over time is controlled when it is above fixed patient and physician thresholds. As the 

model considers the threshold for the physician’s over time, idle time is being controlled indirectly 

which is not discussed in her paper. Then, the concept of lexicographic min-max fairness is applied 

to improve fairness in the appointment scheduling design. In this research information about patients 

is known prior to the start of the clinic session, which belongs to static appointment scheduling.  

Now, we review the surveys using risk measures in the objective values and their advantages  

over the traditional risk-neutral stochastic programming using the expected value. Integrating risk 

measures into the objective functions in two-stage stochastic programming is quite recent research. 

This idea has been used in many studies such as (Ahmed 2004), (Ahmed 2006), (Schultz & Tiedemann 

2006), (Fábián 2008), and (Sarin et al. 2014). 

For a recent survey on mean-risk stochastic programs, we refer the interested reader to the  

work of (Krokhmal et al. 2011). In this survey one can review a comprehensive literature review in 

decision making under uncertainty with the focus on the methods for modeling and controlling of 

risk in the system. 

Using CVaR in model formulation in stochastic scheduling problems which have pervasive   

applications is an effective approach. As stated by many researchers, (Krokhmal et al. 2011), (Sarin et 

al. 2014), and (Qi 2017), it will not only reduce both expectation and variance of a performance 

measure but also when the expectation can be rendered by a linear formulation, it maintains linearity, 

and this later property has a great advantage over traditional nonlinear expectation-variance-based 

methods. (De et al. 1992) used variance as a risk measure to determine expectation-variance based 

efficient schedules. However, using variance as a risk measure has several drawbacks. First, except for 

some special cases (such as the single machine flow time problem discussed by (De et al. 1992)), it is 

difficult to derive analytical expressions for the variance of typical performance measures. Moreover, 

if a scenario-based approach is adopted, the sample variance of any given performance measure 
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involves a quadratic expression, which makes the optimization problem relatively hard to solve. 

Second, minimizing the variance of a random variable equally penalizes positive and negative 

deviations from its mean value.  

In research by (Sarin et al. 2014) CVaR is used as a criterion for stochastic programming with 

applications in scheduling problems. In this paper, a scenario-based MIP model is developed considers 

CVaR as a risk measure. Then, the method is applied to a single machine as well as in the context of 

a parallel machine total weighted tardiness problem, and an L-shaped algorithm and a dynamic 

programming-based heuristic procedure is presented as a solution strategy.  

(Ahmed 2004) and (Ahmed 2006) scrutinize different mean-risk objective functions and corre-  

sponding computational suitability in addressing risk in stochastic programming models. In these 

papers Ahmed shows the complexity of mean-variance stochastic programming which leads to NP-

hard optimization problems, which is computationally intractable even in the simplest stochastic 

programs. Next, he introduces several mean-risk functions: the mean-Conditional-Value-at-Risk 

(CVaR) objective, the mean-semideviation objective, the mean-quantile deviation, and the mean-Gini 

mean difference objective, which all preserve convexity and are computationally tractable using 

negligible variants of existing stochastic programming decomposition algorithms. (Schultz & 

Tiedemann 2006) deals with two-stage mixed-integer stochastic programming and consider 

Conditional Value-at-Risk as a risk measure. Their model formulation involves the integer variables in 

the second-stage problem which makes the problem non-convex. Hence, straightforward 

decomposition algorithms cannot be applied. As a result, they develop the split-variable formulation 

and a solution algorithm applying the Lagrangian relaxation of non-anticipativity. 

In this chapter, there are two levels of decisions: in the first decision, which is advance schedul-  

ing, we decide on how many patients to assign within a fixed time slot length, whereas in the second 

decision, the appointment allocation for each patient is assigned to each time slot. In this research we 
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consider indirect waiting time as part of the model formulation in the objective function while we 

consider providers’ workloads, and two levels of tactical and operational decisions as integrated 

models are studied. It means decisions are dependent on each other and are taken simultaneously. 

Moreover, continuity of care and considering patient preferences as well as direct and indirect waiting 

time are the flow metrics we measure to evaluate patient satisfaction in our optimization problem, 

which is unique in terms of methodology. Moreover, while improving metrics on average, we include 

the CVaR in the model formulation to ensure no subset of patients are experiencing extreme waiting 

times and compare the results with a case in its absence. In other words, we compare the results of 

risk-neutral two-stage stochastic programming and risk-averse two-stage stochastic programming to 

present the advantages of using CVaR. Using CVaR in model formulation in stochastic scheduling 

problems has benefits; it will reduce both expectation and variance of a performance measure and at 

the same time retains linearity whenever the expectation can be presented by a linear expression. We 

begin by formulating a scenario-based (stochastic) mixed integer linear programming to minimize 

CVaR for outpatient appointment scheduling. For the solution scheme we use sample average 

approximation (SAA) to decide on the number of scenarios needed for our calculations. Next, we 

calculate the performance measure: direct and indirect waiting time. In the first phase of our research 

we find the optimal weekly scheduling template as a result of our tactical decisions, and in the second 

phase, we make the operational decisions by dynamically assigning an appointment to an arriving 

patient’s requested time.   

3.3 Model assumptions and framework 

In this chapter we design an appointment scheduling model that channels multiple patient  

types to a team of providers in a women’s specialty clinic. The objective is to improve patient flow 

through outpatient clinics using efficient appointment scheduling policies. Recent research suggests 

that continuity of care not only results in patient satisfaction but also improves the patient health 
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specially when patient’s health condition is in the early stages. In order to reach this goal, we aim to 

minimize the indirect waiting time in the model formulation as part of the objective function and 

direct waiting time at the clinic specialty as part of our constraints in our model. Direct waiting time, 

known as clinic delay, is physical waiting time experienced by the patients once they arrive at the clinic; 

indirect waiting time, known as appointment delay, is defined as the time window between the 

appointment request and the offered appointment, (Zacharias & Armony 2016).  

The process for decision making includes three steps: in the first step, which we call the tactical  

decision, we optimize the maximum capacity for the scheduling template which entertains channeling 

multiple patient types to the provider team. The objective in the first-stage is to balance the provider 

workload between day sessions as well as among each time slot. In the second step, we create the 

operational model, a dynamic appointment scheduling which assigns appointment time to a patient 

request. In the third step, we evaluate the appointment system by a feedback decision; we check the 

daily average waiting time of the sequence of patients and if it is higher than the accepted threshold 

level, we remove that sequence from the tactical decision (Fig 14). We refer the reader to chapter two 

of this dissertation for more information on the patient types and process. 

       

   

 

 

 

                                                            

    If this condition holds, return to tactical decision and 
              remove the sequence causing this  

Fig 14. Research framework 

Tactical Decision: 

Optimal scheduling template 

Operational Decision: 

Updated scheduling template 

Feedback Decision: 

If E [Waiting time] > Threshold 

 

[Mean-risk two-stage SMILP] [Appointment assignment] 
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Some clinics group two to four physicians as a provider team to improve continuity of care 

with scheduling flexibility. Referring to (Qu et al. 2013), we assume a team of two providers. Patients 

are scheduled with any available provider in each clinic session (morning/afternoon) with identical 

service slots of 15 minutes, which is common in practice. Moreover, as many providers are different 

in their practice styles in specialty clinics, the model considers free capacity for lunch hours/ office 

work for the provider team and in some cases appointments for follow-up surgery. Service time 

duration for each patient type is derived from (Qu et al. 2013) and  (Lenin et al. 2015). The research 

framework is the same as shown in Figure 3 in Chapter 2. The contribution of the model goes to the 

mathematical formulation which we will present in section 3.4. 

3.4 Two- stage mean-risk stochastic programming  

Stochastic models, which have considered expectation in the objective function make the mo-  

del formulation risk-neutral. As discussed in the literature review section, to consider the effect of risk 

in the model outcomes, a risk measure is added to the risk-neutral objective function which is called 

the mean-risk stochastic program. We use CVaR as a risk measure since minimizing CVaR in two-

stage stochastic programming maintains linearity and results in a convex optimization problem that 

allows to use the easily available convex optimization methods. As an application of this risk measure 

in financial risk management, suppose 𝑋 shows the value of a financial position (such as assets, 

liabilities and owners’ equity as at a specific date), its Value-at-Risk at a 0.05 confidence level, denoted 

as 𝑉𝑎𝑅0.05(𝑋), defines the risk of 𝑋 as the amount that can be lost with probability of no more than 

5%, over the given time horizon (e.g., weekly/monthly). In this section we briefly review the risk-

neutral two-stage stochastic linear programming and next introduce the model formulation of a two-

stage mean-risk stochastic programming framework. For the following definitions and terminology 

we refer to (Noyan 2012) and (Krokhmal et al. 2011). 

Suppose (Ω, ℱ, Ρ) is a probability space, where Ω is the sample space, ℱ is a 𝜎-algebra on Ω  
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and Ρ is a probability measure on Ω. We consider a finite probability space, where Ω = {𝜔1, … , 𝜔𝑁} 

with corresponding probabilities 𝑝1, … , 𝑝𝑁. The general form of the risk-neutral two-stage stochastic 

linear programming problem is presented by 

𝑚𝑖𝑛𝒙𝜖𝑋𝔼[𝑓(𝒙, 𝜔)] = 𝑚𝑖𝑛𝒙𝜖𝑋𝑐𝑇𝒙 +  𝔼[𝑄(𝒙, 𝜉(𝜔))],                                                                       (15) 

where 𝑓(𝒙, 𝜔) = 𝑐𝑇𝒙 +  𝑄(𝒙, 𝜉(𝜔)) is the total cost function of the first-stage problem and 

  𝑄(𝒙, 𝜉𝑠) = 𝑚𝑖𝑛𝑦𝑠{(𝑞𝑠)𝑇𝑦𝑠 ∶  𝑇𝑠𝒙 + 𝑊𝑠𝑦𝑠 = ℎ𝑠 , 𝑦𝑠 ≥ 0}                                                           (16) 

is the second-stage problem corresponding to the realization of the random data 𝜉(𝜔) for the 

elementary event 𝜔𝑠, represented by 𝜉𝑠 = (𝑞𝑠, 𝑇𝑠, 𝑊𝑠, ℎ𝑠). In (2) 𝒙 and 𝑦 denote the vector of the 

first-stage and second-stage decision variables, in that order. We assume all the matrices meet the 

suitable dimensions and equations (15), (16) and the objective functions are linear. 𝑋 ⊂ ℝ+
𝑛  is a non-

empty set of feasible decisions, 𝑄(𝒙, 𝜉(𝜔)) > −∞ for all 𝜔𝜖Ω, and the second-stage problem (16) 

maybe infeasible for some first-stage decision 𝒙𝜖𝑋. Observe that the first-stage decisions are 

deterministic, and the second-stage decisions are allowed to depend on the elementary events, i.e., 

𝑦𝑠 = 𝑦(𝜔𝑠), 𝑠 = 1, … , 𝑁. Basically, the second-stage decisions denote the operational decisions and 

change depending on certain realizations of the random data. The objective function 𝑄(𝒙, 𝜉(𝜔)) of 

the second-stage problem (16), known as the recourse (cost) function, is a random variable; therefore, 

the total cost function 𝑓(𝒙, 𝜔) is a random variable. In conclusion, the optimal decision variable 𝒙 

results in a problem of comparing random cost variables {𝑓(𝒙, 𝜔)}𝒙∈𝑋  which is one of the main 

streams of decision theory under uncertainty, and it is essential to consider the effect of variability and 

add risk measures to the model. One of the important methods in decision making considering risk 

uses mean-risk models. In these models the minimization is over the mean-risk objective function 

with a risk measure. 
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The risk-averse model is represented as the following minimization: 

𝑚𝑖𝑛𝒙∈𝑋{𝔼[𝑓(𝒙, 𝜔)] +  𝜆𝜌(𝑓(𝒙, 𝜔))}  

while 𝜌: 𝑍 → ℝ is defined as the risk measure, where 𝜌 is a function and 𝑍 is a linear space of ℱ-

measurable functions on the probability space (Ω, ℱ, Ρ); 𝜆 is a non-negative trade-off coefficient 

denoting the exchange rate of the mean cost for the risk/weight factor that quantifies the tradeoff 

between the expected cost and risk, which is also known as the risk coefficient and is determined by 

decision makers according to their risk preferences. There are many downside risk measures; we refer 

the readers to (Ahmed 2006) for the complete list. However, we use the Conditional-Value-at-Risk 

(CVaR) in our model as we explained in the introduction and literature review sections in terms of its 

application and benefits.  

We state that the decision variable 𝒙 is efficient in the concept of the mean-risk if and only if 

 for a given level of expected cost, 𝑓(𝒙, 𝜔) has the lowest possible CVaR, and for a given level of 

CVaR it has the lowest possible expected cost. One can construct the mean-risk efficient frontier by 

finding the efficient solutions for different risk coefficients. Thus, we consider the following two-stage 

mean-risk stochastic programming problem: 

𝑚𝑖𝑛𝒙∈𝑋{𝔼[𝑓(𝒙, 𝜔)] +  𝜆 𝐶𝑉𝑎𝑅𝛼(𝑓(𝒙, 𝜔))},                                                                              (17) 

where 𝐶𝑉𝑎𝑅𝛼 represent the conditional-value-at-risk at level 𝛼.  

Definition 1. Let 𝐹𝑧(. ) denote the cumulative distribution function of a random variable 𝑍. 

Referring to the financial literature, the 𝛼 -quantile  

inf {𝜂𝜖ℝ ∶ 𝐹𝑧(𝜂) ≥ 𝛼}  

is called the value-at-risk (VaR) at the confidence level 𝛼 and represented by 𝑉𝑎𝑅𝛼(𝑍), 𝛼 ∈ (0,1].    

Definition 2. The conditional value-at-risk which is called mean excess loss or tail VaR, at level 𝛼 is 

defined as 
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𝐶𝑉𝑎𝑅𝛼(𝑍) = 𝔼[𝑍|𝑍 ≥ 𝑉𝑎𝑅𝛼(𝑍)].                                                                                            (18)  

This definition provides a clear understanding of the concept of 𝐶𝑉𝑎𝑅: 𝐶𝑉𝑎𝑅𝛼(𝑍) is the 

conditional expected value exceeding the value-at-risk at the confidence level 𝛼. In the minimization 

of the cost function, 𝑉𝑎𝑅𝛼 is the 𝛼-quantile of the distribution of the cost, and it provides an upper 

bound that is exceeded only with a probability of 1 − 𝛼. On the other hand, 𝐶𝑉𝑎𝑅𝛼(𝑍) is a 

measure of severity of the cost if it is more than 𝑉𝑎𝑅𝛼(𝑍). 

Definition 3.  The conditional-value-at-risk of a random variable Z at the confidence level 𝛼 is 

defined by 

𝐶𝑉𝑎𝑅𝛼(𝑍) = 𝑖𝑛𝑓𝜂𝜖ℝ{𝜂 +
1

1−𝛼
𝔼[(𝑍 − 𝜂)+],                                                                              (19) 

where we let  (𝑍)+ = max{0, 𝑍} , 𝑧𝜖ℝ. It is well-known that the infimum in (19) is obtained at 𝛼-

quantile of Z.  

In the following subsections, we first introduce model formulation in section (3.4.1). Next, in section 

(3.4.2) we develop solution scheme; sample average approximation (SAA).  

3.4.1 Model formulation 

In this section we develop the model formulation for two-stage risk-averse stochastic progra-  

mming. We use the same assumptions and terminology as used in the risk-neutral model in chapter 2 

and develop the contribution on the formulation for a risk-averse model as follows.   

The objective of the decision-making problem in the first-stage is to balance a provider’s workload 

not only among morning/afternoon sessions, but also in each time-slot of the clinic. In our model 

formulation, the first-stage determines the amount of maximum capacity reserved for each patient 

type assigned to each provider for individual time-slots in a weekly pattern which will be used as a 

guide for the whole time horizon. In the second-stage, we determine the time-slot utilization for an 
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individual patient type assigned to each provider for individual time-slots under certain realization 𝜔. 

We use the notations shown in Table 15 for the model formulation. 

Set  

𝑇  Set of planning horizon 

ℛ  Set of providers 

𝒩  Set of patient types 

𝑁′  Set of new patient type 

Ω  Set of all scenarios 

𝑅𝑃𝑡  Set of risk factors for different patient type 

𝑅𝑃𝑟  Set of risk factors for different provider levels  

ℋ  Set of free time slots for each provider over time horizon 𝑇 

𝒮  Set of morning/afternoon sessions over time horizon 𝑇 

𝜇  Set of feedback sequence over morning/afternoon session of 

every day 

𝛽  Set of patients scheduled for specific clinic day 

𝜉  Set of exam rooms in the clinic 

Γ  Set of call, desired and appointment times, indexed by 𝛾(𝑡)𝜖Γ 

containing time-slot, 𝑡𝜖𝑇  

 

Parameter 

 

𝑎𝑗  Number of new patients desired by provider, 𝑗𝜖 ℛ  

𝑐𝑓𝑖  Risk factor for patient type, 𝑖𝜖𝒩 

𝐶𝐹𝑗  Risk factor for provider, 𝑗𝜖 ℛ  

𝑡𝑙𝑟𝑗  Tolerance factor of provider, 𝑗𝜖 ℛ  

Δ𝑗  Cost of additional capacity of provider, 𝑗𝜖 ℛ  

𝜌𝑗  Cost of new patient type for provider, 𝑗𝜖 ℛ 

𝑐𝑗  Free capacity for provider, 𝑗𝜖 ℛ over time horizon 𝑇 

𝑝𝑖  Average no-show probability of patient type, 𝑖𝜖𝒩  

𝛼𝜔  Probability of scenario, 𝜔𝜖Ω 
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Μ  A large number 

𝒢  Number of time-slots per week 

|𝒮|  Cardinality of 𝒮 

𝜆  Penalty parameter for penalty variable for each time-slot, 𝑡𝜖𝑇 

𝜆𝑐  Risk/trade-off Coefficient  

𝛼  Confidence level, (0,1] 

𝑑𝑖,𝑗,𝛾(𝑡)(𝜔)  Demand of patient-type, 𝑖𝜖𝒩 ask for provider, 𝑗𝜖 ℛ, with call 

and desired time set 𝛾(𝑡)𝜖Γ under scenario, 𝜔𝜖Ω   

 

First-stage decision variables  

𝑥𝑖,𝑗,𝑡  Number of patient type, 𝑖𝜖𝒩assigned to provider, 𝑗𝜖ℛ per time-

slot, 𝑡𝜖𝑇    

𝑒𝑗  Penalty variable for provider, 𝑗𝜖 ℛ  w.r.t. new patient type 

𝑧𝑗,𝑡  1 if time-slot, 𝑡𝜖𝑇 is free for provider, 𝑗𝜖 ℛ , else 0 

𝑑𝑒𝑣𝑡  Penalty variable for each time-slot, 𝑡𝜖𝑇  

𝜂  Value-at-Risk (VaR), 𝛼-quantile, Target level 

 

Second-stage decision variables  

𝜐(𝜔)  Auxiliary variable for CVaR for 𝜔𝜖Ω 

𝑏𝑗,𝑡 (ω) Capacity slack variable for provider, 𝑗𝜖 ℛ, time-slot, 𝑡𝜖𝑇, under 

scenario, 𝜔𝜖Ω 

𝑦𝑖,𝑗,𝛾(𝑡)  (ω)  Time slot utilization for number of type, 𝑖𝜖𝒩  patient asked for 

provider, 𝑗𝜖 ℛ with call, desired and appointment time set 𝛾(𝑡)𝜖Γ 

under scenario, 𝜔𝜖Ω  

 
Table. 15. Notation used in Mean-Risk two-stage SMILP model 
 

First-stage objective function: 

 

min ∑ 𝜌𝑗   .  𝑒𝑗 + 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇  +  𝐸Ω[ 𝑓(𝑥, 𝜔̃)] + 𝜆𝑐. 𝜂                                                            (𝑃′)𝑗 𝜖 ℛ                                 
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First-stage constraints: 

   𝑒𝑗  +  ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑖𝜖𝑁′ 𝑡𝜖𝑇 ≥  𝑎𝑗                                                                              𝑁′ ⸦  𝑁 , ∀ 𝑗 ∈ ℛ (20)  

   𝑒𝑗 −  ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑖𝜖𝑁′ 𝑡𝜖𝑇 ≥  −𝑎𝑗                                                                            𝑁′ ⸦  𝑁 , ∀ 𝑗 ∈ ℛ (21)  

   𝑑𝑒𝑣𝑡 − ∑ ∑ 𝑥𝑖,𝑗,𝑡    𝑖𝜖𝑁𝑗 𝜖ℛ +  ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑡𝜖𝑇 / ℊ𝑗 𝜖ℛ𝑖𝜖𝑁     ≥ 0                                    ∀ 𝑡 ∈ 𝑇 (22)  

   𝑑𝑒𝑣𝑡 + ∑ ∑ 𝑥𝑖,𝑗,𝑡   𝑖𝜖𝑁𝑗 𝜖ℛ −  ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑡 𝑡𝜖𝑇 / ℊ𝑗 𝜖ℛ𝑖𝜖𝑁     ≥ 0                                     ∀ 𝑡 ∈ 𝑇 (23)  

   ∑ 𝑐𝑓𝑖  . 𝑥𝑖,𝑗,𝑡 ≤𝑖𝜖𝑁  𝐶𝐹𝑗                                                                                                 ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ ℛ (24)  

   ∑ ∑ 𝑐𝑓𝑖  . 𝑥𝑖,𝑗,𝑡 ≤𝑖𝜖𝑁 𝑡∈𝒮 |𝒮|𝐶𝐹𝑗 − 𝑡𝑙𝑟𝑗                                                                   𝒮 ⊂ 𝑇, ∀ 𝑗 ∈ ℛ (25)  

   ∑ 𝑧𝑗,𝑡 =𝑡𝜖ℋ  𝑐𝑗                                                                                                           ℋ ⊂ 𝑇, ∀ 𝑗 ∈ ℛ (26)  

   ∑  𝑥𝑖,𝑗,𝑡 ≤𝑖𝜖𝑁  Μ . (1 −  𝑧𝑗,𝑡)                                                                           ∀ 𝑡 ∈ ℋ ⊂ 𝑇, 𝑗 ∈ ℛ (27)  

   ∑  𝑥𝑖,𝑗,𝑡 ≤𝑖,𝑗,𝑡𝜖𝜂 |𝜂| − 1                                                                                                𝜂 ⊂ 𝛽, 𝜂 ≠ ∅ (28)  

    𝑥𝑖,𝑗,𝑡 ∈  ℤ+,  𝑒𝑗 ∈ ℝ+, 𝑧𝑗,𝑡 ∈ {0,1}, 𝑑𝑒𝑣𝑡 ∈  ℤ+, ℊ ∈ 𝒢                                                                   (29)  

Second-stage objective function: 

 𝑓(𝑥, 𝜔) =

min ∑ ∑ ∑ 𝑦𝑖,𝑗,𝛾(𝑡)(ω). 𝑑𝑖,𝑗,𝛾(𝑡)(𝜔).  𝜗 +𝛾(𝑡)𝜖Γ𝑗 ∈ℛ ∑ ∑ 𝑏𝑗,𝛾(𝑡) (ω) .  Δ𝑗𝛾(𝑡)/{𝑡𝑐,𝑡𝑑}𝜖Γ𝑗 ∈ℛ𝑖𝜖𝑁 +
𝜆𝑐

1−𝛼
 . 𝜐(𝜔)  

 

Second-stage constraints: 

 

 ∑ (1 − 𝑝𝑖) . 𝑦𝑖,𝑗,𝛾(𝑡)(𝜔). 𝑑𝑖,𝑗,𝛾(𝑡)𝛾(𝑡)/{𝑡𝑎}𝜖Γ (𝜔) ≤  𝑥𝑖,𝑗,𝑡 +  𝑏𝑗,𝑡(𝜔)        ∀𝑖 ∈ 𝑁 , 𝑗 ∈ ℛ, 𝑡 ∈ 𝑇 (30)   

 

 ∑  𝑦𝑖,𝑗,𝛾(𝑡)(𝜔)𝛾(𝑡)/{𝑡𝑐,𝑡𝑑}𝜖Γ = 1                                                          ∀𝑖 ∈ 𝑁 , 𝑗 ∈ ℛ, 𝛾(𝑡)/{𝑡𝑎}𝜖Γ (31)   

 

 − ∑ 𝜌𝑗  .𝑗 ∈ℛ  𝑒𝑗 − 𝜆 . ∑ 𝑑𝑒𝑣𝑡𝑡𝜖𝑇 −                                                                                                        (32)   

 

 ( ∑ ∑ ∑ 𝑦𝑖,𝑗,𝛾(𝑡)(ω). 𝑑𝑖,𝑗,𝛾(𝑡)(𝜔).  𝜗𝛾(𝑡)𝜖Γ𝑗 ∈ℛ𝑖𝜖𝑁 +  ∑ ∑ 𝑏𝑗,𝛾(𝑡)(𝜔).𝛾(𝑡)

{𝑡𝑐,𝑡𝑑}𝜖Γ
𝑗 ∈ℛ Δ𝑗) + 𝜂 + 

   𝜐(𝜔) ≥ 0         

 

  0 ≤ 𝑦𝑖,𝑗,𝛾(𝑡)(ω) ≤ 1, 𝑏𝑗,𝑡(𝜔) ∈ ℝ, 𝜐(𝜔) ∈ ℝ+, ∀ 𝜔𝜖Ω                                                                  (33)  

 

In the above formulation, constraints (20) and (21) check the difference between the desired  

number of new patients by individual providers and the assigned number of new patients to each 

provider. In other words, the equity of new patients among all providers is being evaluated by 
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constraints (20) and (21). Constraints (22) and (23) calculate all capacities reserved for each time-slot 

and find the average of the capacities reserved over the week. Finally, they find the deviation between 

capacities reserved for each time-slot and average the amount over the week. Next, this deviation is 

penalized in the objective function (𝑃′). In constraint (24), provider workload in each time slot of the 

clinic is controlled, and individual patient type is channeled to each provider. However, constraint (25) 

is used to balance the provider workload among clinic sessions while channeling patient types to the 

providers. Constraint (26) opens free capacity for each provider based on the desired number of time 

slots by individual providers through afternoon sessions. These free capacities are reserved for 

emergency/ post-surgery follow-up appointment requests. Constraint (27) guarantees there will be no 

assignments in time slots obtained by constraint (26). Constraint (28), which is called the feedback 

constraint, is to remove the sequence of patients whose clinic wait time threshold has been violated. In 

the second-stage, constraint (30) doesn’t allow each time-slot utilization to exceed the capacity 

reserved in the first-stage mixed-integer linear problem. In the second-stage, capacities are determined 

based on first-stage decisions.  

Constraint (31) assigns an appointment time to each demand arrival. Constraint (32) preserves  

the risk-averse properties. Objective function (𝑃′) in the two-stage mixed-integer linear problem 

penalizes the system’s over/under utilization in terms of the time slot. In the first part of the objective 

function, the model penalizes the over/under utilization of time slots reserved for new patient types 

for an individual provider as well as all time slot capacities, and in the second part of the objective 

function, indirect waiting time (the time between a patient’s desired time and the assigned appointment 

time) in terms of time slot is penalized. In the second-stage objective function, 𝜗 denotes 

𝑓(𝑡𝑎 − 𝑡𝑐). (𝑡𝑎 − 𝑡𝑑), where 𝑓(𝑡𝑎 − 𝑡𝑐) =  (𝑡𝑎 − 𝑡𝑐)−
1

2  is called the penalty function and controls 

the indirect waiting time of the system; 𝑡𝑐 and 𝑡𝑎 denote call and appointment times, respectively. By 
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changing the trade-off coefficient 𝜆𝑐 the efficient appointment schedule and appointment policies can 

be constructed, and this would allow the decision maker to evaluate different policies.    

3.4.2 Solution scheme: Sample Average Approximation (SAA) 

The mean-risk two-stage SMILP solvers can typically solve instances with a small number of  

scenarios. However, a typical problem instance in a practical case would have thousands of scenarios. 

Using the sample average approximation (SAA) method is a way to handle this problem. 

We use the sample average approximation (SAA) to reduce the size of the problem by repeatedly 

solving it with a smaller set of scenarios. We generate random samples with 𝒩 < |Ω | realizations of 

the uncertain parameters and approximate the expected recourse costs by the sample average function 

1

𝒩
  ∑ 𝑓(𝑥, 𝜔̃)𝒩

𝑛=1 . For the complete formulation we refer the reader to chapter 2 of this dissertation. 

3.5 Demand Generation 

Demand is an input parameter in the mean-risk two-stage SMILP model. We assume the num-  

ber of patients asking for an appointment is uncertain, so we generate demand for appointment 

requests for many scenarios. Demand is generated with respect to the following scenarios. We assume 

a six-month time horizon for our demand generation. The domain for patient calls has been 

considered for the first four months and their desired time has been generated from a patient call time 

until the end of time horizon (six months). For more explanations we refer to chapter 2 of this 

dissertation. 

3.6 Dynamic Appointment Scheduling   

After finding an optimal weekly appointment scheduling pattern from the mean-risk two-stage 

 SMILP model, the call center uses the solution from the mean-risk two-stage SMILP on daily dynamic 

appointment assignment. This is referred to as Call Center appointment assignment. Next, we simulate the 

call center with demand generation and develop a heuristic policy to assign an appointment time for 

each patient’s arrival. Patients are quoted their appointment times when they request an appointment. 
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The sequence of appointments may change over time as the appointment schedule evolves; however, 

we assume that once an appointment time is assigned for a given patient, it cannot be changed. Our 

demand generation has these parameters: patient type, provider, call time, and desired time for one 

scenario. We design Index heuristic policy to assign an appointment as follows. We divide the 

appointment policy into three categories: first week, one month, and a remaining time window. When 

a patient requests an appointment, it is offered with respect to the maximum capacity in the first week 

of patient’s desired time. If the appointment is not accepted by the patient within the first week, the 

next appointment time is offered at the earliest availability respective to the patient’s request in the 

remaining month; then, if patient still doesn’t accept, we offer the next available time slot in the 

remaining time window until the patient accepts the appointment time. We summarize the index 

heuristic policy below. 

   Index heuristic policy:  

------------------------------------------------------------------------------------------------------------------------------------ 

Input weekly appointment scheduling template S, demand set D for time horizon 𝑇,  

           and appointment acceptance threshold τ     

 1:     for demand arrival D in day 𝑖: 

 2:            𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  {} 

 3:            for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇}:  

 4:                   find the corresponding capacity for time slot 𝑡, 𝐼𝑡 =  𝑥𝑡,  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝐼𝑡 

                      where DT is patient’s desired time, 𝑇 is one-week time window, 

 5:            for 𝑗 ∈ 𝑙𝑒𝑛𝑔𝑡ℎ { 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦}: 

 6:                   find 𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑡), 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇}and offer time slot 𝑡∗ to the patient, 

 7:                   If τ meets, update 𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1; 

                          otherwise, go to step 8 

 8:             for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇′}: 

 9:                   search the first available slot, 𝐼𝑡 =  𝑥𝑡, 𝑥𝑡 > 0, 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇′}, where 𝑇′ 

                      is one-month time window 

10:                 If τ meets, update 𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1; 

                      otherwise go to step 11; 

11:           for 𝑡 ∈ { 𝐷𝑇, … , 𝐷𝑇 + 𝑇”}: 

12:                 assign appointment slot in the remaining time horizon 𝑇”, for 𝐼𝑡 =  𝑥𝑡, 𝑥𝑡 > 0, update 

                      𝑆: 𝐼𝑡 =  𝑥𝑡 − 1 and go to step 1. 

 

Output: updated weekly appointment scheduling template 𝑆.  
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Note that the remaining time window threshold after the first week horizon depends on the patient’s 

urgency. For some patients we may need to consider one month, whereas for other patient types this 

threshold could be in months. It depends on the patient service category. 

3.7 Clinic simulation   

As we discussed in the literature review section, most of the research done on outpatient clinics 

aims to minimize the direct waiting time of the clinic in the model formulation of two-stage mixed 

integer programming. However, we monitor the clinic waiting time of the system by simulating the 

clinic using the following formulation. We check the daily expected waiting time of the clinic for a 

sequence of patients for a given day. After each day, we check if the expected waiting time of the clinic 

for the given day is greater than some threshold; we avoid creating such a sequence of patients in the 

future of the planning horizon by removing that sequence. This approach will affect other flow metrics 

such as the system’s over time and idle time. The clinic has multiple servers, and service times in each 

server are random variables. Figure 15 depicts the resources at every stage of an outpatient procedure 

clinic. 

 

 

 

       

 

 

 

 

 

 

 
 
Fig 15. The resources at every stage of an outpatient procedure clinic     
 
                                                                               

▪ Check-in/out Staff 

▪ Nurses 

 

 

Intake Procedure 

▪ Nurses 
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▪ Clinic’s equipment 
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We calculate patient waiting time 𝑊𝑖,𝓀 by developing the following formula considering  

multiple servers in the system: 

𝑊1,𝓀 = 0      , ∀ 𝓀 = 1, … , 𝑘 

𝑊𝑖,𝓀 = (𝑊𝑖−1,𝓀 +  𝑍𝑖−1,𝓀 −  𝑥𝑖−1,𝓀)+   , 𝑖 = 2, … , 𝑛, 𝓀 = 1, … , 𝑘  

 

where 𝑍𝑖,𝓀 is the independent and identically distributed service duration for patient 𝑖 at clinic room 

𝓀, 𝑥𝑖,𝓀 is customer allowance (inter-arrival time between patient 𝑖 and 𝑖 + 1),  (. )+ indicates max(. ,0) 

and 𝑑 is session length. The total waiting time of the system for a given day equals ∑ ∑ 𝑊𝑖,𝓀𝓀𝜖𝜉   𝑖𝜖𝛽 , 

where 𝛽 is the set of patients scheduled for an individual clinic day, 𝜉 is the set of clinic rooms in the 

clinic, 𝑘 is the number of clinic rooms, and 𝑛 is the number of patients. The flow of patients at the 

clinic is shown in Fig 16 and 17. Fig 19 shows an example of a clinic layout at an OBGYN clinic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 16. Appointment services in which the sequence of appointments is FCFS (First Come-First 

Serve) 
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Fig 17. Flow of OBGYN patients in the clinic

 
 

Fig 18. Example of a clinic layout (https://www.ramtechmodular.com/medical-floorplans/) 
 
3.8 Case Study 

In this section, we report a case study that demonstrates how well the proposed mean-risk two  

-stage SMILP model approach performs in terms of the multi-category outpatient appointment 

scheduling for the women’s clinic studied. The clinic characteristics and patient demand data used in 
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the case study are acquired from the literature of women’s specialty clinics. The values of the 

parameters in the mean-risk two-stage SMILP model are selected from (Qu et al. 2013) and (Lenin et 

al. 2015) as well as some from preliminary numerical experiments and are denoted in Table 16. In 

particular, the service time durations for each patient types to visit the providers are from (Qu et al. 

2013), and the service time distributions for other clinic’s stations such as time spent by check-in 

person, nurse, lab tech, and check-out person are driven from (Lenin et al. 2015). For data and study 

design we refer to chapter 2 of this dissertation.  

Notation Description Value 

K Total number of physicians available in each clinic 

session 

2 

N  

  

Number of time slots in each clinic session   16 

Δj  Cost of additional capacity of provider [2000, 2000] 

aj  Number of new patients desired by provider [10,10] 

cfi  Risk factor for patient type [1.67, 0.4, 0.67, 1.2, 0.87, 0.67, 1] 

CFj  Risk factor for provider [1.67, 1.67] 

tlrj  Tolerance factor of provider [4.5, 4.5] 

ρj  Cost of new patient type for provider 1.7 

cj  Free capacity for provider, jϵ ℛ over time horizon T [2, 2] 

Μ  A large number 4.8 

𝒮  Set of morning/afternoon sessions over time horizon 

T 

8 

ℊ  Patient acceptance threshold for the first week 0.5 <= threshold< 1 

ℑ  Patient acceptance threshold for one month 0.2 <= threshold< 0.5 

Τ  Time horizon 120 days 

𝒻  Steady state 61– 100 days 

𝜆𝑐  Risk/trade-off Coefficient  0.1, 0.2 

𝛼  Confidence level, (0,1] 0.1 

Table. 16. Two-stage SMILP model setting parameters in the case study 
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3.9 Computational Results 

The calculations were carried out on a Dell, 64-bit operating system, and 80 GB RAM. The  

solution scheme is implemented in Python 2.7.12. Gurobi is used as a solver for two-stage SMILP and 

SAA. In this section we present the significance of applying risk-averse two-stage SMILP approach 

versus risk-neutral SMILP. Definition of the base-case is the same as it is in the risk-neutral SMILP 

approach in chapter 2. We consider three threshold levels to check whether the daily patient flows are 

satisfactory. To do so, we drive the experimental results for threshold levels:  = 50%, 65%, and 80% 

quantiles. The experiments designed for 50 scenarios with respect to the sample average 

approximation results with less gap%. The model is evaluated for different values of risk coefficients, 

𝜆𝑐=0.1 and 0.2, and confidence level, 𝛼=0.1.  

Tables 17 and 18 present the decrease percentages of direct waiting time for different thresh-  

old levels and risk coefficients when applying risk-averse approach. The results show direct waiting 

time decreases up to 8% when applying risk-averse approaches compared to the risk-neutral model 

and up to 20% compared to the base-case. The results evaluate the waiting time for all patient types. 

Table 19 compares indirect waiting time decrease-% of risk-averse and risk-neutral two-stage with 

base-case in the first week which shows more decrease in indirect waiting time, 4.7%, at threshold 

level 80% for risk-averse model and 6.2% for 50% threshold level. Table 20 represents the indirect 

waiting time decreased up to 33% in risk-averse two-stage compared to risk-neutral approach. 

Decrease in Avg. Direct Waiting Time (%) 

Risk Coefficient Threshold = 50% Threshold = 65% Threshold = 80% 

𝜆𝑐 = 0.1 3.2% 2.9% 2.3% 

𝜆𝑐 = 0.2 8% 5.1% 2.4% 

 
Table. 17. Advantage of risk-averse two-stage SMILP over risk-neutral two-stage SMILP for direct 

wait time, 𝛼 =0.1 
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Decrease in Avg. Direct Waiting Time (%) 

Model Threshold=50% Threshold=65% Threshold = 80% 

Risk-neutral 16% 6% 3% 

Risk-averse, 𝜆𝑐 = 0.1 16.3% 8.7% 5.3% 

Risk-averse, 𝜆𝑐 = 0.2 20% 10.7% 5.3% 

 
Table.18. Comparing direct wait time improvement-% of risk-averse and risk-neutral two-stage 

SMILP with base-case for case-2 demand scenario, 𝛼 =0.1  
 
 

 
Table.19. Comparing indirect wait time, decrease-%, of risk-averse and risk-neutral two-stage SMILP 

with base-case for case-2 demand scenario, Risk Coefficient, 𝜆𝑐 = 0.2, 𝛼 =0.1 
 

Indirect Waiting Time 

Risk Coefficient Threshold = 50% Threshold = 65% Threshold = 80% 

𝜆𝑐 = 0.2 33% 31% 29% 

 
Table.20. Advantage of risk-averse two-stage SMILP over risk-neutral two-stage SMILP for indirect 

wait time, 𝛼 =0.1 
 
 
 
 
 

Indirect Waiting Time  

Model Time-window Threshold = 50% Threshold = 65% Threshold = 80% 

Risk-neutral Week-1 6% 5% 1.2% 

Risk-averse Week-1 6.2% 5% 4.7% 
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3.10 Conclusion  

In this chapter we developed mean-risk two-stage stochastic programming in which we inve-  

stigate the effect of considering a risk measure in the model. We applied Conditional-Value-at-Risk 

(CVaR) as a risk measure for the two-stage stochastic programming model. Results from testing our 

models using data inspired by real-world OBGYN clinics suggest that the proposed formulations can 

improve patient satisfaction through reduced direct and indirect waiting times without compromising 

provider utilization. 

In general, three directions for future research related to objective functions can be proposed.  

First, the linear relationship between time-based measures and their corresponding costs can be 

considered. Second, the Pareto approach, which provides a set of non-dominant (Pareto optimal) 

solutions, which is used in a few papers (Castro & Petrovic 2012) and (Qu et al. 2012). Third, risk-

averse objectives can be used instead of risk-neutral objectives in order to control the variability of 

the target performance measures. A few optimization studies propose risk-averse objectives, such as 

the Markowitz mean-variance method (e.g., (Mak et al. 2015); (Qu et al. 2012)) and the Von 

Neumann–Morgenstern expected utility method (e.g., (Kemper et al. 2014); (Kuiper & Mandjes 2015); 

(LaGanga & Lawrence 2012); (Vink et al. 2015)). Other contributions are related to how often to re-

execute two-stage stochastic programming, improvement to heuristic policy in call center, applying 

decomposition algorithm as solution approach as well as investigating meta-heuristic approaches. 
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CHAPTER 4: CONCLUSION AND FUTURE RESEARCH 

In this dissertation, we study the application of stochastic programming in solving health care 

problems. In chapter two of this dissertation we mainly focus on risk-neutral two-stage stochastic 

programming where the objective function considers the expected value as a performance criterion. 

We discuss methods for improving flow through outpatient clinics considering effective appointment 

scheduling policies by applying two-stage Stochastic Mixed-Integer Linear Program Model (two-stage 

SMILP) approaches to improve patient flow metrics: direct wait time (clinic wait time), indirect wait 

time considering patient’s no-show behavior, stochastic server, follow-up surgery appointments, and 

overbooking. The objective includes two models: 1) a method to optimize the (weekly) scheduling 

pattern for individual providers that would be updated at regular intervals (e.g., quarterly or annually) 

based on the type and mix of services rendered and 2) a method for dynamically scheduling patients 

using the weekly scheduling pattern. Scheduling will entertain the possibility of arranging multiple 

appointments at once (e.g., both surgery and post-surgery follow-up visits can be scheduled together 

for improved care).  

The aim is to increase throughput per session while providing timely care, continuity of care,  

and overall patient satisfaction as well as equity of resource utilization. We introduced an index 

heuristic policy to simulate patient appointment scheduling in call center by considering patient 

preference date for the appointment. Finally, through clinic simulation we evaluate if the daily patient 

flows are satisfactory. Value of overbooking in every scheduling session was stablished through 

assigning different values to maximum patient criticality that provider can handle in a session. To 

show the advantages of two-stage programming we define base-case scenario with simulating clinic 

and call center using the same scenario as we design in risk-neutral two-stage SMILP approach. Our 

results present improvement in patient flow metrics: direct and indirect waiting time, in two-stage 

stochastic programming over the base-case.  
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In the third chapter we expand the model formulation to mean-risk two-stage stochastic progr-  

amming in which we investigate the effect of considering a risk measure in the model. We focus on 

Conditional-Value-at-Risk (CVaR) for the risk measure as it keeps the convexity property, and one 

can use available solvers to solve the two-stage stochastic programming. Currently, we are working on 

the result preparation. 

4.1 Future research 

In general, three directions for future research related to objective functions can be proposed. 

First, the linear relationship between time-based measures and their corresponding costs can be 

considered. Second, the Pareto approach, which provides a set of non-dominant (Pareto optimal) 

solutions, which is used in a few papers (Castro & Petrovic 2012) and (Qu et al. 2012). Third, risk-

averse objectives can be used instead of risk-neutral objectives in order to control the variability of 

the target performance measures. A few optimization studies propose risk-averse objectives, such as 

the Markowitz mean-variance method (e.g., (Mak et al. 2015); (Qu et al. 2012)) and the Von 

Neumann–Morgenstern expected utility method (e.g., (Kemper et al. 2014); (Kuiper & Mandjes 2015); 

(LaGanga & Lawrence 2012); (Vink et al. 2015)). Other contributions are related to how often to re-

execute two-stage stochastic programming, improvement to heuristic policy in call center, applying 

decomposition algorithm as solution approach as well as investigating meta-heuristic approaches. 
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Appendix 

Comparison of patient flow metrics for each patient type between Two-stage SMILP and 
base-case for case-2 demand scenario 

Considering different threshold levels for patient flow metric distributions, Fig 19-25 compare 

 direct wait time distributions for patient type-1 to type-7 for case-2 demand scenario between base-

case and two-stage SMILP with threshold levels:  = 50%, 65%, and 80% quantiles. The average 

waiting time in two-stage SMILP is less than that of base-case; improving up to 27%, 11%, 49%, 13%, 

20%, 23%, and 87% for patient type-1 to type-7 in that order compare to base-case (Table 6). In Fig 

19 for patient type-1, at threshold level  = 50%, median is 20 minutes which is less than other 

threshold levels and the base-case. It shows 50% of population has waiting time less than 20 minutes 

and 25% of population in  = 50% has less than 1 minute waiting time, and in 65% and 80% threshold 

levels it is less than 2 minutes while in the base-case it is less than 7 minutes.  

Fig 20 shows the results for patient type-2. 25% of the population in all threshold levels has  

waiting time less than 5, 6, and 7 minutes while in base-case it is less than 9 minutes. In addition, 75% 

of population with less than 14 and 15 minutes waiting time in two-stage SMILP shows robust results. 

For patient typ-3, Fig 21 depicts the median in all threshold levels is less than that in the base-case; 9 

minutes versus 14.5 minutes. 25% of the population in all threshold levels has no waiting time whereas 

in the base-case, 25% of the population has waiting time less than 8 minutes. Moreover, 75% of 

population has waiting time less than 17, 18, and 19 minutes for all threshold levels in two-stage 

SMILP compared to the 24 minutes in base-case. Fig 22 for patient type-4 shows 25% of the 

population in threshold level:  = 50% has waiting time less than 10.5 minutes while 25% of the 

population has waiting time less than 13 minutes in the base-case. In Fig 23, median in all threshold 

levels for patient type-5 is less than that in the base-case and 25% of the population in all threshold 

levels has less than 7 and 9.5 minutes of waiting time comparing to that in the base-case with less than 
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11 minutes. In addition, 75% of population has waiting time at most 19 minutes in two-stage SMILP 

comparing to 21 minutes in the base-case.      

Fig 24 denotes up to 8 minutes waiting time in two-stage SMILP and 12 minutes in base-case  

covering 25% of the population of patient type-6. Moreover, 75% of population has up to 19 minutes 

waiting time for all threshold levels in two-stage SMILP compared to 21 minutes in the base-case. The 

graph of waiting time for patient type-7 in Fig 25 shows less median in all threshold levels compared 

to the base-case. Also, 25% of the population has up to 3 minutes waiting time in two-stage SMILP 

verses 12 minutes in the base-case and 75% of population has at most 18 minutes of waiting time in 

two-stage SMILP compares to 20 minutes for the base-case.      

Direct Waiting Time 

 

              base−case                     80%                          65%                             50% 

Fig 19. Direct wait time distribution for patient type-1 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
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Direct Waiting Time 

 

              base−case                     80%                          65%                             50% 
Fig 20. Direct wait time distribution for patient type-2 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
 

   

Direct Waiting Time 

 

            base−case                     80%                          65%                             50% 
Fig 21. Direct wait time distribution for patient type-3 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
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Direct Waiting Time 

 

               base−case                     80%                          65%                             50% 
Fig 22. Direct wait time distribution for patient type-4 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
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                                                                         base−case                     80%                          65%                             50% 
Fig 23. Direct wait time distribution for patient type-5 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
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Direct Waiting Time 

 

    base−case                      80%                           65%                             50% 
Fig 24. Direct wait time distribution for patient type-6 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
 

 

Direct Waiting Time 

 

              base−case                     80%                          65%                             50% 
Fig 25. Direct wait time distribution for patient type-7 for case-2 demand scenario, comparing base-

case and Two-stage SMILP with threshold level:  = 50%, 65%, and 80% 
 
Trade-off between direct wait time and indirect wait time for each patient type between Two-
stage SMILP and base-case for case-2 demand scenario 
 

Fig (26-32) represent the trade-off between direct wait time and indirect wait time distribu-  

tions for two-stage stochastic programming (SMILP) with different threshold levels  = 50%, 65%, 

and 80% quantiles and the base-case. The average waiting time is higher in the base-case, comparing 

to other threshold levels. Therefore, we expect the crowded clinic days for indirect wait time in the 

beginning of the time horizon comparing to other threshold levels. Base-case shows weaker result 
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compares to two-stage stochastic programming as it has busy clinic days at the first two weeks and 

some appointments for weeks 3 and 4 which shows high waiting time in the system.  

 

                      Indirect Waiting Time                                                       Average Waiting Time 

                                                      
 
Fig 26. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-1 for 
case-2 demand scenario 
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Fig 27. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-2 for 

case-2 demand scenario 
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                                 Indirect Waiting Time                                             Average Waiting Time 

      
 

Fig 28. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-3 for 

case-2 demand scenario 
 

 

                           Indirect Waiting Time                                                    Average Waiting Time         

      
 

Fig 29. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-4 for 

case-2 demand scenario 
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Fig 30. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-5 for 

case-2 demand scenario 
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Fig 31. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-6 for 

case-2 demand scenario 
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Fig 32. Trade-off between direct wait time and indirect wait time distributions between Two-stage 

SMILP with threshold levels:  = 50%, 65%, and 80% quantile and base-case for patient type-7 for 

case-2 demand scenario 
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A variety of studies have documented the substantial deficiencies in the quality of health care  

delivered across the United States. Attempts to reform the United States health care system in the 

1980s and 1990s were inspired by the system's inability to adequately provide access, ensure quality, 

and restrain costs, but these efforts had limited success. In the era of managed care, access, quality, 

and costs are still challenges, and medical professionals are increasingly dissatisfied.  

In recent years, appointment scheduling in outpatient clinics has attracted much attention in  

health care delivery systems. Increase in demand for health care services as well as health care costs 

are the most important reasons and motivations for health care decision makers to improve health 

care systems. The goals of health care systems include patient satisfaction as well as system utilization. 

Historically, less attention was given to patient satisfaction compared to system utilization and 

conveniences of care providers. Recently, health care systems have started setting goals regarding 

patient satisfaction and improving the performance of the health system by providing timely and 

appropriate health care delivery.  
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In this study we discuss methods for improving patient flow through outpatient clinics consid-  

ering effective appointment scheduling policies by applying two-stage Stochastic Mixed-Integer Linear 

Program Model (two-stage SMILP) approaches. Goal is to improve the following patient flow metrics: 

direct wait time (clinic wait time) and indirect wait time considering patient’s no-show behavior, 

stochastic server, follow-up surgery appointments, and overbooking. The research seeks to develop 

two models: 1) a method to optimize the (weekly) scheduling pattern for individual providers that 

would be updated at regular intervals (e.g., quarterly or annually) based on the type and mix of services 

rendered and 2) a method for dynamically scheduling patients using the weekly scheduling pattern. 

Scheduling templates will entertain the possibility of arranging multiple appointments at once. The 

aim is to increase throughput per session while providing timely care, continuity of care, and overall 

patient satisfaction as well as equity of resource utilization. First, we use risk-neutral two-stage 

stochastic programming model where the objective function considers the expected value as a 

performance criterion in the selection of random variables like total waiting times and next, we expand 

the model formulation to mean-risk two-stage stochastic programming in which we investigate the 

effect of considering a risk measure in the model. We apply Conditional-Value-at-Risk (CVaR) as a 

risk measure for the two-stage stochastic programming model. Results from testing our models using 

data inspired by real-world OBGYN clinics suggest that the proposed formulations can improve 

patient satisfaction through reduced direct and indirect waiting times without compromising provider 

utilization. 
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